Area under curve

Calculus Level 3

0 0.5 1 x 2 d x \large \int_0^{0.5} \sqrt {1-x^2} \ dx

We can do this problem in two ways.

  1. By trigonometric substitution
  2. By geometry


The answer is 0.47830573874.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

By Calculus, we first substitute: x = sin θ d x = cos θ d θ x=\sin{\theta} \quad \Rightarrow dx = \cos{\theta}\space d\theta , then:

I = 0 1 2 1 x 2 ) d x = 0 π 6 cos 2 θ d x = 1 2 0 π 6 ( cos 2 θ + 1 ) d x \displaystyle I = \int_0^{\frac{1}{2}} {\sqrt{1-x^2)}\space dx} = \int_0^{\frac{\pi}{6}} {\cos^2 {\theta}\space dx} = \frac {1}{2} \int_0^{\frac{\pi}{6}} {(\cos {2\theta} + 1) \space dx}

= 1 2 [ sin 2 θ 2 + θ ] 0 π 6 = 1 2 [ 3 4 + π 6 ] = 3 8 + π 12 0.478 \displaystyle = \frac {1}{2} \left[ \frac {\sin{2\theta}}{2}+\theta \right] _0^{\frac{\pi}{6}} = \frac {1}{2} \left[ \frac {\sqrt{3}}{4}+\frac{\pi}{6} \right] = \frac {\sqrt{3}}{8}+\frac{\pi}{12} \approx \boxed{0.478}

By Geometry; the integral I I is the area of the shaded region in the first quadrant of the unit-radius circle (see figure below). It is the area of the triangle plus the area of the circle segment.

Therefore, we have:

I = 1 2 ˙ 1 2 ˙ 3 3 + π 6 2 π π ( 1 2 ) = 3 8 + π 12 0.478 \displaystyle I = \frac {1}{2}\dot{}\frac{1}{2}\dot{}\frac{\sqrt{3}}{3} + \frac {\frac{\pi}{6}}{2\pi} \pi(1^2)= \frac {\sqrt{3}}{8}+\frac{\pi}{12} \approx \boxed{0.478}

nice sultion

Patience Patience - 4 years, 6 months ago
Tony Sprinkle
Jan 6, 2015

This is the integral for finding the area inside the unit circle above the x x -axis for 0 x 1 2 0 \le x \le \frac{1}{2} . This region can be split up into two smaller regions: a right triangle with base 1 2 \frac{1}{2} and height 3 2 \frac{\sqrt{3}}{2} and a circular sector with radius 1 1 and angle measure π 6 \frac{\pi}{6} radians. Thus:

0 0.5 1 x 2 d x = A t r i a n g l e + A s e c t o r = 1 2 1 2 3 2 + 1 2 π 6 1 2 = 3 8 + π 12 0.478 \int_0^{0.5} \sqrt{1 - x^2} \: dx = A_{triangle} + A_{sector} \\ = \frac{1}{2}\cdot\frac{1}{2}\cdot\frac{\sqrt{3}}{2} + \frac{1}{2}\cdot\frac{\pi}{6}\cdot 1^2 = \frac{\sqrt{3}}{8} + \frac{\pi}{12} \approx \boxed{0.478}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...