Areas!

Geometry Level pending

In A B C \triangle{ABC} above, A B D C = 1 \overline{AB} \cong \overline{DC} = 1 and m D A C = 3 0 m\angle{DAC} = 30^{\circ} and B A D \angle{BAD} is a right angle.

If A A B D = a b b b c a A_{\triangle{ABD}} = \dfrac{a}{b}\sqrt{b^{\frac{b}{c}} - a} , where a , b a, b and c c are coprime positive integers, find a + b + c a + b + c .


The answer is 6.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rocco Dalto
Feb 5, 2021

In A D C , θ α = 3 0 α = θ 30 \triangle{ADC}, \:\ \theta - \alpha = 30^{\circ} \implies \alpha = \theta - 30 and m = x 2 1 m = \sqrt{x^2 - 1} .

Using the law of sines on A D C 1 sin ( 3 0 ) = m sin ( θ 3 0 ) \triangle{ADC} \implies \dfrac{1}{\sin(30^{\circ})} = \dfrac{m}{\sin(\theta - 30^{\circ})} \implies

m = 2 sin ( θ 3 0 ) = 3 sin ( θ ) cos ( θ ) m = 3 ( 1 x ) m x m = 2\sin(\theta - 30^{\circ}) = \sqrt{3}\sin(\theta) - \cos(\theta) \implies m = \sqrt{3}(\dfrac{1}{x}) - \dfrac{m}{x}

= 1 x ( 3 m ) m x = 3 m ( x + 1 ) m = 3 m = 3 x + 1 = \dfrac{1}{x}(\sqrt{3} - m) \implies mx = \sqrt{3} - m \implies (x + 1)m = \sqrt{3} \implies m = \dfrac{\sqrt{3}}{x + 1} \implies

3 x + 1 = x 2 1 3 = ( x 2 1 ) ( x + 1 ) 2 = ( x 1 ) ) x 3 + 3 x 2 + 3 x + 1 ) \dfrac{\sqrt{3}}{x + 1} = \sqrt{x^2 - 1} \implies 3 = (x^2 - 1)(x + 1)^2 = (x - 1))x^3 + 3x^2 + 3x + 1)

x 4 + 2 x 3 2 x 4 = 0 x 3 ( x + 2 ) 2 ( x + 2 ) = 0 \implies x^4 + 2x^3 - 2x - 4 = 0 \implies x^3(x + 2) - 2(x + 2) = 0 \implies

( x 3 2 ) ( x + 2 ) = 0 (x^3 - 2)(x + 2) = 0 and x 2 x = 2 1 3 m = x 2 1 = 2 2 3 1 x \neq -2 \implies x = 2^{\frac{1}{3}} \implies m = \sqrt{x^2 - 1} = \sqrt{2^{\frac{2}{3}} - 1} \implies

A A B D = 1 2 2 2 3 1 = a b b b c a a + b + c = 6 A_{\triangle{ABD}} = \dfrac{1}{2}\sqrt{2^{\frac{2}{3}} - 1} = \dfrac{a}{b}\sqrt{b^{\frac{b}{c}} - a} \implies a + b + c = \boxed{6} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...