Areas add easily, don't they?

Geometry Level 5

Triangle A B C ABC has A B = 2 AB = 2 , B C = 3 BC = 3 , C A = 4 CA = 4 , and circumcenter O O . If the sum of the areas of triangles A O B AOB , B O C BOC , and C O A COA is a b c \tfrac{a\sqrt{b}}{c} for positive integers a a , b b , c c , where gcd ( a , c ) = 1 \gcd(a, c) = 1 and b b is not divisible by the square of any prime, find a + b + c a+b+c .


The answer is 152.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Sharky Kesa
Aug 21, 2017

We find that cos A B C = 1 4 \cos \angle ABC=-\frac{1}{4} by Law of Cosines on A B C \angle ABC in Δ A B C \Delta ABC , so 4 sin A B C = 16 15 = 2 R \frac{4}{\sin \angle ABC}= \frac{16}{\sqrt{15}} =2R by Extended Law of Sines, giving R = 8 15 15 R=\frac{8\sqrt{15}}{15} .

Now the desired area is [ A B C ] + 2 [ A O C ] [ABC] + 2[AOC] , so we use [ A B C ] = a b c 4 R = 3 15 4 [ABC]= \frac{abc}{4R} = \frac{3\sqrt{15}}{4} and 2 [ A O C ] = 4 2 15 = 8 15 15 2[AOC] = 4 \cdot \frac{2}{\sqrt{15}}= \frac{8\sqrt{15}}{15} , which adds up to 77 15 60 \frac{77\sqrt{15}}{60} .

Thus, the answer is 152 152 .

B y H e r o n s F o r m u l a A r e a A B C = 1 4 9 1 5 3 . C i r c u m r a d i u s R = a b c 4 ( a r e a A B C ) = 8 15 15 . T h e t h r e e Δ s a r e i s o s c e l e s w i t h b a s e a , b , c , a n d R a s e q u a l s i d e s . t h e i r b a s e a l t i t u d e s a r e L a , L b , L c g i v e n b y R 2 ( h a l f b a s e ) 2 . A r e a s a r e Δ a = 1 2 L a a , Δ b = 1 2 L b b , Δ c = 1 2 L c c , S u m o f a r e a s = 1 2 ( 64 15 ( 2 2 ) 2 2 2 . + 64 15 ( 3 2 ) 2 3 2 . + 64 15 ( 4 2 ) 2 4 2 . ) S u m o f a r e a s = 77 15 60 = a b c . S o a + b + c = 77 + 15 + 60 = 152. By~Heron's ~Formula~~Area ~ABC=\dfrac 1 4*\sqrt{9*1*5*3}.\\ Circumradius~R = \dfrac{abc}{4*(area~ ABC)} =\dfrac{8*\sqrt{15}}{15}.\\ The~three~\Delta s~are~isosceles~with~base~a, b, c,~~and~R~as~equal~sides.\\ \therefore~their~base~altitudes~are~L_a, L_b, L_c~~given~by~\sqrt{R^2-(half~base)^2}.\\ \therefore~Areas~are~~~~\Delta_a=\frac1 2 *L_a*a,~~~~\Delta_b=\frac1 2 *L_b*b,~~~~\Delta_c=\frac1 2 *L_c*c,~~~~\\ Sum~of~areas=\frac 1 2* \Big( \sqrt{\frac{64}{15}-(\frac 2 2)^2}*\frac 2 2.~~+~~\sqrt{\frac{64}{15}-(\frac 3 2)^2}*\frac 3 2.~~+~~\sqrt{\frac{64}{15}-(\frac 4 2)^2}*\frac 4 2.\Big )\\ Sum~of~areas=\dfrac{77\sqrt{15}}{60}=\dfrac{a* \sqrt b} c .\\ So~a+b+c=77+15+60=\Large \color{#D61F06}{152}.

Note:- ABC is obtuse, so O is outside the triangle ABC.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...