Areas and Alternating Series Reposted.

Calculus Level 4

Let x < 1 |x| < 1 and ( 0 < a < 1 ) (0 < a < 1) .

If f ( x ) = n = 1 ( 1 ) n + 1 x n n f(x) = \sum_{n = 1}^{\infty} (-1)^{n + 1} \dfrac{x^n}{n} and g ( x ) = n = 1 ( 1 ) n + 1 n x n g(x) = \sum_{n = 1}^{\infty} (-1)^{n + 1} n x^n and the region R R bounded by f f and g g on [ 0 , a ] [0,a] has area A R = a ln ( a + 1 ) ( 2 a 1 ) A_{R} = a\ln(a + 1) - (2a - 1) , find the real value of a a and express the answer as the value of A R A_{R} to six decimal places.


The answer is 0.061337.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rocco Dalto
May 14, 2018

Let x < 1 |x| < 1 and ( 0 < a < 1 ) (0 < a < 1) .

Let f ( x ) = n = 1 ( 1 ) n + 1 x n n f(x) = \sum_{n = 1}^{\infty} (-1)^{n + 1} \dfrac{x^n}{n} .

d d x ( f ( x ) ) = n = 1 ( 1 ) n + 1 x n 1 = 1 1 + x f ( x ) = 0 x 1 1 + x d x = ln ( 1 + x ) \implies \dfrac{d}{dx}(f(x)) = \sum_{n = 1}^{\infty} (-1)^{n + 1} x^{n - 1} = \dfrac{1}{1 + x} \implies f(x) = \int_{0}^{x} \dfrac{1}{1 + x} dx = \ln(1 + x) .

For 0 a ln ( 1 + x ) d x \int_{0}^{a} \ln(1 + x) dx

0 a ln ( 1 + x ) d x = ( x ln ( 1 + x ) + ln ( 1 + x ) x ) 0 a = ( x + 1 ) ln ( 1 + x ) x 0 a = ( a + 1 ) ln ( a + 1 ) a \int_{0}^{a} \ln(1 + x) dx = (x\ln(1 + x) + \ln(1 + x) - x)|_{0}^{a} = (x + 1)\ln(1 + x) - x|_{0}^{a} = (a + 1)\ln(a + 1) - a .

n = 1 n x n = j = 1 n = j x n = 1 1 x j = 1 x j = 1 1 x ( x ) 1 1 x = x ( 1 x ) 2 \sum_{n = 1}^{\infty} n x^n = \sum_{j = 1}^{\infty} \sum_{n = j}^{\infty} x^n = \dfrac{1}{1 - x}\sum_{j = 1}^{\infty} x^{j} = \dfrac{1}{1 - x}(x)\dfrac{1}{1 - x} = \dfrac{x}{(1 - x)^2}

g ( x ) = n = 1 ( 1 ) n + 1 n x n = n = 1 n ( x ) n = x ( 1 + x ) 2 \implies g(x) = \sum_{n = 1}^{\infty} (-1)^{n + 1} n x^n = - \sum_{n = 1}^{\infty} n (-x)^n = \dfrac{x}{(1 + x)^2} .

Let u = 1 + x d u = d x 0 a g ( x ) d x = 1 a + 1 1 u 1 u 2 d u = ( ln ( u ) + 1 u ) 0 a + 1 = ln ( a + 1 ) + 1 a + 1 1 u = 1 + x \implies du = dx \implies \int_{0}^{a} g(x) dx = \int_{1}^{a + 1} \dfrac{1}{u} - \dfrac{1}{u^2} du = (\ln(u) + \dfrac{1}{u})|_{0}^{a + 1} = \ln(a + 1) + \dfrac{1}{a + 1} - 1

0 a f ( x ) g ( x ) d x = a ln ( a + 1 ) a 2 a + 1 = a ln ( a + 1 ) ( 2 a 1 ) \implies \int_{0}^{a} f(x) - g(x) dx = a\ln(a + 1) - \dfrac{a^2}{a + 1} = a\ln(a + 1) - (2a - 1) a 2 + a 1 = 0 a = 1 ± 5 2 \implies a^2 + a - 1 = 0 \implies a = \dfrac{-1 \pm \sqrt{5}}{2} ( 0 < a < 1 ) a = 5 1 2 (0 < a < 1) \implies a = \dfrac{\sqrt{5} - 1}{2} \implies 0 5 1 2 f ( x ) g ( x ) d x = \int_{0}^{\frac{\sqrt{5} - 1}{2}} f(x) - g(x) dx = 5 1 2 ln ( 1 + 5 2 ) 3 5 5 + 1 0.061337 \dfrac{\sqrt{5} - 1}{2}\ln(\dfrac{1 + \sqrt{5}}{2}) - \dfrac{3 - \sqrt{5}}{\sqrt{5} + 1} \approx \boxed{0.061337} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...