Areas and Common Tangents

Calculus Level 3

Let n n be a positive integer, f ( x ) = x 1 2 n + 1 f(x) = x^{\frac{1}{2n + 1}} and g ( x ) = x 2 n + 1 g(x) = x^{2n + 1}

f ( x ) f(x) and g ( x ) g(x) have common tangent lines at points A A and B B and C C and D D respectively.

Let A ( n ) A(n) be the area of the region R R bounded by the tangent lines and f ( x ) f(x) and g ( x ) g(x) . I . E ; \bf I.E; The regions R 1 R_{1} and R 2 R_{2} as shown above.

Find lim n A ( n ) \lim_{n \rightarrow \infty} A(n) .


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rocco Dalto
Dec 30, 2019

Let f ( x ) = x 1 2 n + 1 f(x) = x^{\frac{1}{2n + 1}} and g ( x ) = x 2 n + 1 g(x) = x^{2n + 1}

From the graph above R ( 0 , 0 ) R y = x ( x 0 , y 0 ) = ( y 0 , x 0 ) R_{(0,0)} \circ R_{y = x} (x_{0},y_{0}) = (-y_{0},-x_{0})

Using A : ( x 0 , y 0 ) A: (x_{0},y_{0}) and B : ( y 0 , x 0 ) B: (-y_{0},-x_{0}) \implies slope m A B = 1 m_{AB} = 1 \implies

f ( x 0 ) = 1 2 n + 1 ( 1 x 0 ) 2 n 2 n + 1 = 1 f'(x_{0}) = \dfrac{1}{2n + 1}(\dfrac{1}{x_{0}})^{\frac{2n}{2n + 1}} = 1 \implies x 0 = ( 1 2 n + 1 ) 2 n + 1 2 n x_{0} = (\dfrac{1}{2n + 1})^{\frac{2n + 1}{2n}} \implies

A : ( ( 1 2 n + 1 ) 2 n + 1 2 n , ( 1 2 n + 1 ) 1 2 n ) A: ((\dfrac{1}{2n + 1})^{\frac{2n + 1}{2n}} , (\dfrac{1}{2n + 1})^{\frac{1}{2n}}) and B : ( ( 1 2 n + 1 ) 1 2 n ) , ( 1 2 n + 1 ) 2 n + 1 2 n ) B: (-(\dfrac{1}{2n + 1})^{\frac{1}{2n}}),-(\dfrac{1}{2n + 1})^{\frac{2n + 1}{2n}})

y = x + ( 2 n ) j ( n ) \implies y = x + (2n)j(n) , where j ( n ) = ( 1 2 n + 1 ) 2 n + 1 2 n j(n) = (\dfrac{1}{2n + 1})^{\frac{2n + 1}{2n}}

A 1 ( n ) = 0 j ( n ) ( x + ( 2 n ) j ( n ) x 1 2 n + 1 ) d x = \implies A_{1}(n) = \displaystyle\int_{0}^{j(n)} (x + (2n)j(n) - x^{\frac{1}{2n + 1}}) \:\ dx =

1 2 x 2 + ( 2 n ) j ( n ) x + ( 2 n + 1 2 n + 2 ) x 2 n + 2 2 n + 1 0 j ( n ) = \dfrac{1}{2}x^2 + (2n)j(n)x + (\dfrac{2n + 1}{2n + 2})x^{\frac{2n + 2}{2n + 1}}|_{0}^{j(n)} =

( 4 n + 1 2 ) ( j ( n ) ) 2 ( 2 n + 1 2 n + 2 ) ( j ( n ) ) 2 n + 2 2 n + 1 = (\dfrac{4n + 1}{2})(j(n))^2 - (\dfrac{2n + 1}{2n + 2})(j(n))^{\frac{2n + 2}{2n + 1}} =

( 4 n + 1 2 ) ( 1 2 n + 1 ) 2 n + 1 n ( 2 n + 1 2 n + 2 ) ( 1 2 n + 1 ) n + 1 n = (\dfrac{4n + 1}{2})(\dfrac{1}{2n + 1})^{\frac{2n + 1}{n}} - (\dfrac{2n + 1}{2n + 2})(\dfrac{1}{2n + 1})^{\frac{n + 1}{n}} =

1 2 ( n n + 1 ) ( 1 2 n + 1 ) 2 n + 1 n \boxed{\dfrac{1}{2}(\dfrac{n}{n + 1})(\dfrac{1}{2n + 1})^{\frac{2n + 1}{n}}}

and

A 2 ( n ) = ( 1 2 n + 1 ) 1 2 n 0 ( x + ( 2 n ) j ( n ) x 2 n + 1 ) d x = A_{2}(n) = \displaystyle\int_{-(\dfrac{1}{2n + 1})^{\frac{1}{2n}}}^{0} (x + (2n)j(n) - x^{2n + 1}) \:\ dx =

1 2 x 2 + ( 2 n ) j ( n ) x ( 1 2 n + 2 ) x 2 n + 2 ( 1 2 n + 1 ) 1 2 n 0 = \dfrac{1}{2}x^2 + (2n)j(n)x - (\dfrac{1}{2n + 2})x^{2n + 2}|_{-(\dfrac{1}{2n + 1})^{\frac{1}{2n}}}^{0} =

( 1 2 ( 1 2 n + 1 ) 1 n ( 2 n ) ( 1 2 n + 1 ) n + 1 n ( 1 2 n + 2 ) ( 1 2 n + 1 ) n + 1 n ) = -(\dfrac{1}{2}(\dfrac{1}{2n + 1})^{\frac{1}{n}} - (2n)(\dfrac{1}{2n + 1})^{\frac{n + 1}{n}} - (\dfrac{1}{2n + 2})(\dfrac{1}{2n + 1})^{\frac{n + 1}{n}}) =

( 1 2 ( 1 2 n + 1 ) 1 n ( 1 2 n + 1 ) n + 1 n ( ( 2 n + 1 ) 2 2 ( n + 1 ) ) ) = -(\dfrac{1}{2}(\dfrac{1}{2n + 1})^{\frac{1}{n}} - (\dfrac{1}{2n + 1})^{\frac{n + 1}{n}} (\dfrac{(2n + 1)^2}{2(n + 1)})) =

1 2 ( n n + 1 ) ( 1 2 n + 1 ) 1 n \boxed{\dfrac{1}{2}(\dfrac{n}{n + 1})(\dfrac{1}{2n + 1})^{\frac{1}{n}}}

A R 1 ( n ) = A 1 ( n ) + A 2 ( n ) = ( n n + 1 ) ( 2 n 2 + 2 n + 1 ( 2 n + 1 ) 2 ) ( 1 2 n + 1 ) 1 n = A R 2 ( n ) \implies A_{R_{1}}(n) = A_{1}(n) + A_{2}(n) = \boxed{(\dfrac{n}{n + 1})(\dfrac{2n^2 + 2n + 1}{(2n + 1)^2})(\dfrac{1}{2n + 1})^{\frac{1}{n}}} = A_{R_{2}}(n)

lim n A R 1 ( n ) = 1 2 lim n ( 1 2 n + 1 ) 1 n \implies \lim_{n \rightarrow \infty} A_{R_{1}}(n) = \dfrac{1}{2}\lim_{n \rightarrow \infty} (\dfrac{1}{2n + 1})^{\frac{1}{n}}

and

lim n ( 1 2 n + 1 ) 1 n = \lim_{n \rightarrow \infty} (\dfrac{1}{2n + 1})^{\frac{1}{n}} = lim n e ( ln ( 1 2 n + 1 ) n ) = \lim_{n \rightarrow \infty} e^{(\dfrac{\ln(\frac{1}{2n + 1})}{n})} =

e lim n ( ln ( 1 2 n + 1 ) n ) = e^{\lim_{n \rightarrow \infty} (\dfrac{\ln(\frac{1}{2n + 1})}{n})} = e lim n ( 2 2 n + 1 ) = e 0 = 1 e^{\lim_{n \rightarrow \infty} (\dfrac{-2}{2n + 1})} = e^{0} = 1

lim n A R 1 ( n ) = 1 2 \implies \lim_{n \rightarrow \infty} A_{R_{1}}(n) = \dfrac{1}{2} \implies

Total Area A = lim n A ( n ) = 2 lim n A R 1 ( n ) = 1 A = \lim_{n \rightarrow \infty} A(n) = 2\lim_{n \rightarrow \infty} A_{R_{1}}(n) = \boxed{1} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...