Areas and Reflections

Calculus Level 4

When the curve f ( x ) = 4 5 ( x 1 x 2 ) f(x) = \dfrac{4}{5}\left(\sqrt{x} - \sqrt{1 - x^2}\right) is reflected about the line y = 8 5 x 4 5 y = \dfrac{8}{5}x - \dfrac{4}{5} a closed curve is formed. Find the area of the closed curve above to seven decimal places.


The answer is 0.2671939.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rocco Dalto
Mar 17, 2018

To find ( x 0 , y 0 ) (x_{0},y_{0}) :

4 5 ( x 1 x 2 ) = 4 5 ( 2 x 1 ) x 2 x 1 x 2 + 1 x 2 = 4 x 2 4 x + 1 5 x 5 x 2 = 2 x 1 x 2 \dfrac{4}{5}(\sqrt{x} - \sqrt{1 - x^2}) = \dfrac{4}{5}(2x - 1) \implies x - 2\sqrt{x}\sqrt{1 - x^2} + 1 - x^2 = 4x^2 - 4x + 1 \implies 5x - 5x^2 = 2\sqrt{x}\sqrt{1 - x^2}

25 x 2 ( 1 2 x + x 2 ) = 4 x 4 x 3 25 x 4 50 x 3 + 25 x 2 = 4 x 4 x 3 x ( 25 x 3 46 x 2 + 25 x 4 ) = 0 \implies 25x^2(1 - 2x + x^2) = 4x - 4x^3 \implies 25x^4 - 50x^3 + 25x^2 = 4x - 4x^3 \implies x(25x^3 - 46x^2 + 25x - 4) = 0 \implies

x ( x 1 ) ( 25 x 2 21 x + 4 ) = 0 x = 0 , x = 1 , x = 21 ± 41 50 x(x - 1)(25x^2 - 21x + 4) = 0 \implies x = 0, x = 1, x = \dfrac{21 \pm \sqrt{41}}{50} .

From the graph above two points of intersection are ( 1 , 4 5 ) (1,\dfrac{4}{5}) and ( 0 , 4 5 ) (0,\dfrac{-4}{5}) . Since there are only three points of intersection \implies only one of the values of x = 21 ± 41 50 x = \dfrac{21 \pm \sqrt{41}}{50} are valid.

Choosing x 0 = 21 41 50 y ( x 0 ) = f ( x 0 ) = 4 125 ( 4 + 41 ) \boxed{x_{0} = \dfrac{21 - \sqrt{41}}{50}} \implies y(x_{0}) = f(x_{0}) = \dfrac{-4}{125}(4 + \sqrt{41}) .

A 1 = 2 x 0 1 ( y f ( x ) ) d x = 8 5 x 0 1 ( 1 x 2 x + ( 2 x 1 ) ) d x A_{1} = 2\int_{x_{0}}^{1} (y - f(x)) dx = \dfrac{8}{5}\int_{x_{0}}^{1} (\sqrt{1 - x^2} - \sqrt{x} + (2x - 1))dx .

Let x = sin ( θ ) d x = cos ( θ ) x = \sin(\theta) \implies dx = \cos(\theta) A 1 = 8 5 ( π 4 1 2 arcsin ( x 0 ) 1 2 x 0 1 x 0 2 2 3 + 2 3 x 0 3 2 x 0 2 + x 0 ) \implies A_{1} = \dfrac{8}{5}(\dfrac{\pi}{4} - \dfrac{1}{2}\arcsin(x_{0}) - \dfrac{1}{2}x_{0}\sqrt{1 - x_{0}^2} - \dfrac{2}{3} + \dfrac{2}{3}{x_{0}}^{\dfrac{3}{2}} - {x_{0}}^2 + x_{0})

In a similar fashion:

A 2 = 2 0 x 0 ( f ( x ) y ) d x = 8 5 0 x 0 ( 1 x 2 + x 2 x + 1 ) d x = A_{2} = 2\int_{0}^{x_{0}} (f(x) - y) dx = \dfrac{8}{5}\int_{0}^{x_{0}} (-\sqrt{1 - x^2} + \sqrt{x} - 2x + 1) dx =

8 5 ( 1 2 arcsin ( x 0 ) 1 2 x 0 1 x 0 2 + 2 3 x 0 3 2 x 0 2 + x 0 ) . \dfrac{8}{5}(\dfrac{-1}{2}\arcsin(x_{0}) - \dfrac{1}{2}x_{0}\sqrt{1 - {x_{0}}^2} + \dfrac{2}{3}{x_{0}}^{\dfrac{3}{2}} - {x_{0}}^2 + x_{0}).

The desired area A = A 1 + A 2 = 8 5 ( π 4 arcsin ( x 0 ) x 0 1 x 0 2 2 3 + 4 3 x 0 3 2 2 x 0 2 + 2 x 0 ) . 2671939 A = A_{1} + A_{2} = \dfrac{8}{5}(\dfrac{\pi}{4} - \arcsin(x_{0}) - x_{0}\sqrt{1 - x_{0}^2} - \dfrac{2}{3} + \dfrac{4}{3}{x_{0}}^{\dfrac{3}{2}} - 2{x_{0}}^2 + 2x_{0}) \approx \boxed{.2671939}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...