Areas and Rotations.

Level pending

In the above diagram, the parabola x 2 + 2 x y + y 2 + 2 x 2 y = 0 x^2 + 2xy + y^2 + \sqrt{2}x - \sqrt{2}y = 0 is tangent to a circle with radius 1 1 and center ( a 2 , a 2 ) (-\dfrac{a}{\sqrt{2}},\dfrac{a}{\sqrt{2}}) at points P P and Q Q as shown above.

If the area A A of the region bounded by the above parabola and circle can be expressed as A = a a b π a A = \dfrac{a\sqrt{a}}{b} - \dfrac{\pi}{a} , where a a and b b are coprime positive integers, find a + b a + b .


The answer is 7.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rocco Dalto
Dec 9, 2019

Using the equations of rotation for a rotation about the origin ( 0 , 0 ) : (0,0):

x = x cos ( θ ) y sin ( θ ) x = x'\cos(\theta) - y'\sin(\theta)

y = x sin ( θ ) + y cos ( θ ) y = x'\sin(\theta) + y'\cos(\theta)

Replacing x x and y y in x 2 + 2 x y + y 2 + 2 x 2 y = 0 x^2 + 2xy + y^2 + \sqrt{2}x - \sqrt{2}y = 0 and finding θ \theta we obtain:

x 2 + y 2 + ( x 2 y 2 ) sin ( 2 θ ) + 2 cos ( 2 θ ) x y + 2 ( cos ( θ ) sin ( θ ) ) x 2 ( sin ( θ ) + cos ( θ ) ) y = 0 x'^2 + y'^2 +(x'^2 - y'^2)\sin(2\theta) + 2\cos(2\theta)x'y' + \sqrt{2}(\cos(\theta) - \sin(\theta))x' - \sqrt{2}(\sin(\theta)+ \cos(\theta))y' = 0

Setting x y x'y' term to zero we have cos ( 2 θ ) = 0 2 θ = π 2 θ = π 4 \cos(2\theta) = 0 \implies 2\theta = \dfrac{\pi}{2} \implies \theta = \dfrac{\pi}{4}

2 x 2 2 y 2 = 0 y = x 2 \implies 2x'^2 - 2y'^2 = 0 \implies \boxed{y' = x'^2} .

Using the equations of rotation with θ = π 4 \theta = \dfrac{\pi}{4} we obtain

a 2 = 1 2 x 1 2 y -\dfrac{a}{\sqrt{2}} = \dfrac{1}{\sqrt{2}} x'- \dfrac{1}{\sqrt{2}}y'

a 2 = 1 2 x + 1 2 y \dfrac{a}{\sqrt{2}} = \dfrac{1}{\sqrt{2}}x' + \dfrac{1}{\sqrt{2}}y'

x = 0 , y = a \implies x' = 0, y' = a \implies ( a 2 , a 2 ) ( 0 , a ) (-\dfrac{a}{\sqrt{2}},\dfrac{a}{\sqrt{2}}) \rightarrow (0,a) .

Using y = x 2 y' = x'^2 and center O : ( 0 , a ) O':(0,a) and P : ( x , y ) = ( x , x 2 ) P':(x',y') = (x',x'^2) \implies

D = r 2 = x 2 + ( x 2 a ) 2 d D d x = 2 x ( 2 x 2 + 1 2 a ) = 0 D = r^2 = x'^2 + (x'^2 - a)^2 \implies \dfrac{dD}{dx} = 2x'(2x'^2 + 1 - 2a) = 0

x 0 x = ± 2 a 1 2 x' \neq 0 \implies x' = \pm\sqrt{\dfrac{2a - 1}{2}} and the radius r = 1 4 a 1 = 4 r = 1 \implies 4a - 1 = 4 \implies

a = 5 4 x = 3 2 y = 3 4 a = \dfrac{5}{4} \implies x' = \dfrac{\sqrt{3}}{2} \implies y' = \dfrac{3}{4} \implies the equation of the circle is

x 2 + ( y 5 4 ) 2 = 1 x'^2 + (y' - \dfrac{5}{4})^2 = 1 and the portion of the circle needed is y = 5 4 1 x 2 \boxed{y' = \dfrac{5}{4} - \sqrt{1 - x'^2}} .

The area A = 2 0 3 2 ( 5 4 1 x 2 x 2 ) d x A = 2\displaystyle\int_{0}^{\dfrac{\sqrt{3}}{2}} (\dfrac{5}{4} - \sqrt{1 - x'^2} - x'^2) dx

Letting x = sin ( λ ) d x = cos ( λ ) d λ x' = \sin(\lambda) \implies dx' = \cos(\lambda) d\lambda \implies

A = 2 ( 1 2 0 π 3 ( 1 + cos ( 2 λ ) ) d λ + ( 5 4 x x 3 3 ) 0 3 2 ) = A = 2(-\dfrac{1}{2}\displaystyle\int_{0}^{\dfrac{\pi}{3}} (1 + \cos(2\lambda)) d\lambda + (\dfrac{5}{4}x' - \dfrac{x'^3}{3})|_{0}^{\frac{\sqrt{3}}{2}}) =

2 ( 1 2 ( λ + 1 2 sin ( 2 λ ) ) 0 π 3 + 3 2 ) 2(-\dfrac{1}{2}(\lambda + \dfrac{1}{2}\sin(2\lambda))|_{0}^{\frac{\pi}{3}} + \dfrac{\sqrt{3}}{2})

= 3 3 4 π 3 = a a b π a a + b = 7 = \dfrac{3\sqrt{3}}{4} - \dfrac{\pi}{3} = \dfrac{a\sqrt{a}}{b} - \dfrac{\pi}{a} \implies a + b = \boxed{7} .

Note: In the x y xy system using the equations of rotation with θ = π 4 \theta = \dfrac{\pi}{4} the center is ( 5 4 2 , 5 4 2 ) (-\dfrac{5}{4\sqrt{2}},\dfrac{5}{4\sqrt{2}}) \implies

the equation of the circle(in the xy system) is ( x + 5 4 2 ) 2 + ( y 5 4 2 ) 2 = 1 (x + \dfrac{5}{4\sqrt{2}})^2 + (y - \dfrac{5}{4\sqrt{2}})^2 = 1

and P : ( 2 3 3 4 2 , 3 2 3 4 2 ) P:(\dfrac{-2\sqrt{3} - 3}{4\sqrt{2}}, \dfrac{3 - 2\sqrt{3}}{4\sqrt{2}}) and Q : ( 2 3 3 4 2 , 3 + 2 3 4 2 ) Q:(\dfrac{2\sqrt{3} - 3}{4\sqrt{2}}, \dfrac{3 + 2\sqrt{3}}{4\sqrt{2}})

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...