Areas in an isosceles triangle (corrected)

Geometry Level 4

A B C \triangle ABC is isosceles with A B = A C \overline{AB} = \overline{AC} and base angle A B C = A C B = θ \angle ABC = \angle ACB = \theta . B D BD is perpendicular to A C AC and F E FE is perpendicular to B D BD , where F F is the midpoint of A B AB . If the area of B D C \triangle BDC is 10 \bold{10} times the area of B E F \triangle BEF , find the value of θ \theta in degree.

Figure not drawn to scale.


The answer is 53.3.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Let the area of B E F \triangle BEF be a a . Since A B D \triangle ABD is similar to B E F \triangle BEF and its sides are twice as long, the area of A B D \triangle ABD is 2 2 a = 4 a 2^2 a = 4a . To generalize let the area of B D C \triangle BDC be n a na , where n n is a positive integer, then the area of A B C \triangle ABC is ( n + 4 ) a (n+4)a .

Then the ratio of the areas [ B D C ] [ A B C ] = n n + 4 \dfrac {[BDC]}{[ABC]} = \dfrac n{n+4} and we have:

[ B D C ] = n n + 4 [ A B C ] 1 2 C D B D = n n + 4 1 2 B C A C sin θ B C cos θ B C sin θ = n n + 4 B C A C sin θ B C cos θ = n n + 4 A C B C A C cos θ = n n + 4 Note that B C A C = 2 cos θ 2 cos 2 θ = n n + 4 cos θ = n 2 ( n + 4 ) θ = cos 1 n 2 ( n + 4 ) \begin{aligned} [BDC] & = \frac n{n+4} [ABC] \\ \frac 12 \overline{CD} \cdot \overline{BD} & = \frac n{n+4} \cdot \frac 12 \overline{BC} \cdot \overline{AC}\sin \theta \\ \overline{BC} \cos \theta \cdot \overline{BC} \sin \theta & = \frac n{n+4} \overline{BC} \cdot \overline{AC} \sin \theta \\ \overline{BC} \cos \theta & = \frac n{n+4} \overline{AC} \\ \frac {\overline{BC}}{\overline{AC}} \cos \theta & = \frac n{n+4} & \small \blue{\text{Note that }\frac {\overline{BC}}{\overline{AC}} = 2 \cos \theta} \\ 2 \cos^2 \theta & = \frac n{n+4} \\ \cos \theta & = \sqrt{\frac n{2(n+4)}} \\ \implies \theta & = \cos^{-1} \sqrt{\frac n{2(n+4)}} \end{aligned}

For n = 10 n=10 , we have θ = cos 1 5 14 53.3 \theta = \cos^{-1} \sqrt{\dfrac 5{14}} \approx \boxed{53.3}^\circ .

David Vreken
Sep 6, 2020

Since B F E B A D \triangle BFE \sim \triangle BAD by AA similarity, and since B F = F A BF = FA , B E = E D BE = ED .

Let x = B E = E D x = BE = ED . Then C D = 2 x tan θ CD = \frac{2x}{\tan \theta} , and the area of the blue triangle is A B D C = 1 2 C D B D = 1 2 2 x tan θ 2 x = 2 x 2 tan θ A_{\triangle BDC} = \frac{1}{2} \cdot CD \cdot BD = \frac{1}{2} \cdot \frac{2x}{\tan \theta} \cdot 2x = \frac{2x^2}{\tan \theta}

From the angle sum of C B D \triangle CBD , C B D = 90 ° θ \angle CBD = 90° - \theta , and since A B C = θ \angle ABC = \theta , F B E = A B C C B D = θ ( 90 ° θ ) = 2 θ 90 ° \angle FBE = \angle ABC - \angle CBD = \theta - (90° - \theta) = 2\theta - 90° . From the angle sum of B F E \triangle BFE , B F E = 90 ° ( 2 θ 90 ° ) = 180 ° 2 θ \angle BFE = 90° - (2\theta - 90°) = 180° - 2\theta . That means E F = x tan ( 180 ° 2 θ ) = x tan 2 θ EF = \frac{x}{\tan (180° - 2\theta)} = \frac{-x}{\tan 2\theta} , and the area of the yellow triangle is A B E F = 1 2 B E E F = 1 2 x x tan 2 θ = x 2 2 tan 2 θ A_{\triangle BEF} = \frac{1}{2} \cdot BE \cdot EF = \frac{1}{2} \cdot x \cdot \frac{-x}{\tan 2\theta} = \frac{-x^2}{2\tan 2\theta} .

We are given that A B D C = 10 A B E F A_{\triangle BDC} = 10 A_{\triangle BEF} , so 2 x 2 tan θ = 10 x 2 2 tan 2 θ \frac{2x^2}{\tan \theta} = \frac{-10x^2}{2\tan 2\theta} . Substituting tan 2 θ = 2 tan θ 1 tan 2 θ \tan 2\theta = \frac{2\tan\theta}{1 - \tan^2 \theta} and solving gives θ = tan 1 ( 3 5 ) 53.3 ° \theta = \tan^{-1} (\frac{3}{\sqrt{5}}) \approx \boxed{53.3°} .

Toby M
Sep 8, 2020

As previously mentioned, the area of Δ A B D \Delta ABD is 2 2 = 4 2^2 = 4 times that of Δ B E F \Delta BEF . Therefore, Δ B D C \Delta BDC is only 10 4 = 2.5 \frac{10}{4} = 2.5 times larger in area than Δ A B D \Delta ABD .

Now, since Δ A B D \Delta ABD and Δ D B C \Delta DBC have the same base, B D BD , their heights must be in the same ratio as their areas (this comes from the fact A = 1 2 b h A = \frac{1}{2}bh ). Let A D = p AD = p . Then C D = 2.5 p CD = 2.5p . Since A B C ABC is isoceles, A B = A C = p + 2.5 p = 3.5 p AB = AC = p + 2.5p = 3.5p .

Using some trigonometry, tan θ = B D 2.5 p B D = 2.5 p tan θ \tan \theta = \frac{BD}{2.5 p} \Rightarrow BD = 2.5 p \tan \theta . We also need to find B A C \angle BAC which is just 180 º 2 θ 180º - 2 \theta . We then use the formula A = 1 2 a b sin C A = \frac{1}{2}ab \sin C for a triangle to express Δ A B D \Delta ABD and Δ B D C \Delta BDC in terms of θ \theta :

Δ A B D + Δ B D C = Δ A B C \Delta ABD + \Delta BDC = \Delta ABC 1 2 ( A D ) ( B D ) + 1 2 ( B D ) ( D C ) = 1 2 ( A B ) ( A C ) sin ( 180 º 2 θ ) \frac{1}{2} (AD)(BD) + \frac{1}{2} (BD)(DC) = \frac{1}{2} (AB)(AC) \sin(180º - 2 \theta) 1 2 ( p ) ( 2.5 p tan θ ) + 1 2 ( 2.5 p tan θ ) ( 2.5 p ) = 1 2 ( 3.5 p ) ( 3.5 p ) sin 2 θ \frac{1}{2} (p)( 2.5 p \tan \theta) + \frac{1}{2}(2.5 p \tan \theta)(2.5 p) = \frac{1}{2} (3.5p)(3.5p) \sin 2 \theta 2.5 p 2 tan θ + 6.25 p 2 tan θ = 12.25 p 2 sin 2 θ 2.5p^2 \tan \theta + 6.25 p^2 \tan \theta = 12.25 p^2 \sin 2 \theta tan θ = 1.4 sin 2 θ sin θ cos θ = 2.8 sin θ cos θ \tan \theta = 1.4 \sin 2 \theta \Rightarrow \frac{\sin \theta}{\cos \theta} = 2.8 \sin \theta \cos \theta 1 = 2.8 cos 2 θ 1 2.8 = cos θ 1 = 2.8 \cos^2 \theta \Rightarrow \sqrt{\frac{1}{2.8}} = \cos \theta θ = cos 1 ( 1 2.8 ) = 53.3 º . \theta = \cos^{-1} \left( \sqrt{\frac{1}{2.8}} \right) = \boxed{53.3º}.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...