Areas made from a line and a parabola

Calculus Level 4

Given the line y = 3 2 x y=\frac { 3 }{ 2 } x and the parabola y = x 2 + a y={ x }^{ 2 }+a with a > 0 a>0 . Let S 1 { S }_{ 1 } and S 2 { S }_{ 2 } be the striped areas as shown in the diagram below.

If S 1 = S 2 { S }_{ 1 }={ S }_{ 2 } , then in which interval must a a lie?

( 1 2 ; 9 16 ) \left( \frac { 1 }{ 2 } ;\frac { 9 }{ 16 } \right) ( 0 ; 2 5 ) \left( 0;\frac { 2 }{ 5 } \right) ( 2 5 ; 9 20 ) \left( \frac { 2 }{ 5 } ;\frac { 9 }{ 20 } \right) ( 9 20 ; 1 2 ) \left( \frac { 9 }{ 20 } ;\frac { 1 }{ 2 } \right)

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Guilherme Niedu
Jun 27, 2019

First let us calculate the intersection points between the line and the parabola, which I'll call x 1 x_1 and x 2 x_2 ( x 1 < x 2 ) (x_1 < x_2) :

x 2 + a = 3 2 x \large \displaystyle x^2 + a = \frac32 x

2 x 2 3 x + 2 a = 0 \large \displaystyle 2x^2 - 3x + 2a = 0

x 1 = 3 9 16 a 4 \color{#20A900} \boxed { \large \displaystyle x_1 = \frac{3 - \sqrt{9-16a}}{4} }

x 2 = 3 + 9 16 a 4 \color{#20A900} \boxed { \large \displaystyle x_2 = \frac{3 + \sqrt{9-16a}}{4} }

The areas will be:

S 1 = 0 x 1 [ x 2 + a 3 2 x ] d x \large \displaystyle S_1 = \int_0^{x_1} \left [ x^2 + a - \frac32 x \right ] dx

S 1 = ( 72 a 27 ) + ( 9 16 a ) 9 16 a 96 \color{#20A900} \boxed { \large \displaystyle S_1 = \frac{ (72a-27) + (9-16a)\sqrt{9-16a} }{96} }

S 2 = x 1 x 2 [ 3 2 x ( x 2 + a ) ] d x \large \displaystyle S_2 = \int_{x_1}^{x_2} \left [ \frac32 x - (x^2 + a) \right ] dx

S 2 = ( 9 16 a ) 9 16 a 48 \color{#20A900} \boxed { \large \displaystyle S_2 = \frac{(9-16a)\sqrt{9-16a} }{48} }

Making S 1 = S 2 S_1 = S_2 :

72 a 27 + ( 9 16 a ) 9 16 a = ( 18 32 a ) 9 16 a \large \displaystyle 72a-27 + (9-16a)\sqrt{9-16a} = (18-32a)\sqrt{9-16a}

72 a 27 = ( 9 16 a ) 9 16 a \large \displaystyle 72a-27 = (9-16a)\sqrt{9-16a}

Squaring both sides:

4096 a 3 1728 a 2 = 0 \large \displaystyle 4096a^3 - 1728a^2 = 0

Since a > 0 a > 0 :

a = 1728 4096 = 27 64 = 0.421875 \color{#3D99F6} \boxed { \large \displaystyle a = \frac{1728}{4096} = \frac{27}{64} = 0.421875 }

So, a a lies in:

( 2 5 ; 9 20 ) \color{#3D99F6} \boxed { \large \displaystyle \left ( \frac25 ; \frac{9}{20} \right ) }

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...