Arithmetic

Algebra Level 2

In an arithmetic sequence, the sum of the first and the third terms is 6, and the sum of the second and fourth terms is 20. Determine the fifteenth term of the sequence.


The answer is 94.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Ikkyu San
May 4, 2015

From general terms of arithmetic sequence, a n = a 1 + ( n 1 ) d a_n=a_1+(n-1)d

since,

a 2 = a 1 + ( 2 1 ) d = a 1 + d a 3 = a 1 + ( 3 1 ) d = a 1 + 2 d a 4 = a 1 + ( 4 1 ) d = a 1 + 3 d \begin{aligned}\color{#D61F06}{a_2}=&\ a_1+(2-1)d=&\ \color{#D61F06}{a_1+d}\\\color{#20A900}{a_3}=&\ a_1+(3-1)d=&\ \color{#20A900}{a_1+2d}\\\color{#3D99F6}{a_4}=&\ a_1+(4-1)d=&\ \color{#3D99F6}{a_1+3d}\end{aligned}

That is,

a 1 + ( a 1 + 2 d ) = 2 a 1 + 2 d = 6 ( 1 ) ( a 1 + d ) + ( a 1 + 3 d ) = 2 a 1 + 4 d = 20 ( 2 ) Equation(2) - Equation(1); 2 d = 14 d = 7 \begin{aligned}a_1+(\color{#20A900}{a_1+2d})=&\ 2\color{#69047E}{a_1}+2\color{#624F41}d=&\ 6&\Rightarrow(1)\\(\color{#D61F06}{a_1+d})+(\color{#3D99F6}{a_1+3d})=&\ 2\color{#69047E}{a_1}+4\color{#624F41}d=&\ 20&\Rightarrow(2)\\\text{Equation(2) - Equation(1);}\quad\quad\ 2\color{#624F41}d=&\ 14\Rightarrow \color{#624F41}{d=7}\end{aligned}

instead d \color{#624F41}d with 7 \color{#624F41}7 in equation (1);

2 a 1 + 2 ( 7 ) = 6 2 a 1 + 14 = 6 2 a 1 = 8 a 1 = 4 \begin{aligned}2\color{#69047E}{a_1}+2(\color{#624F41}7)=&\ 6\\2\color{#69047E}{a_1}+14=&\ 6\\2\color{#69047E}{a_1}=&\ -8\\\color{#69047E}{a_1}\color{#69047E}=&\ \color{#69047E}{-4}\end{aligned}

Thus, a 15 = a 1 + 14 d = 4 + 14 ( 7 ) = 4 + 98 = 94 a_{15}=\color{#69047E}{a_1}+14\color{#624F41}d=\color{#69047E}{-4}+14(\color{#624F41}7)=-4+98=\boxed{94}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...