Arithmetic-Geometric Series Application.

Calculus Level 5

Let x < 1 |x| < 1 and f ( x ) = n = 0 ( a + n d ) x n f(x) = \sum_{n = 0}^{\infty} (a + nd)x^n and g ( x ) = n = 0 ( a + n 2 d ) x n g(x) = \sum_{n = 0}^{\infty} (a^{*} + n^2 d^{*})x^n .

If f ( 1 2 ) = g ( 1 2 ) = 2 f(\dfrac{1}{2}) = g(\dfrac{1}{2}) = 2 and f ( 1 2 ) = g ( 1 2 ) = 2 9 f(-\dfrac{1}{2}) = g(-\dfrac{1}{2}) = \dfrac{2}{9} and the area A A of the region bounded by f ( x ) f(x) and g ( x ) g(x) on [ 1 2 , 1 2 ] [-\dfrac{1}{2},\dfrac{1}{2}] can be expressed as A = α α β ( α α λ ln ( λ ) ) A = \dfrac{{\alpha}^{\alpha}}{\beta}(\dfrac{{\alpha}^{\alpha}}{\lambda} - \ln(\lambda)) , where α , β \alpha, \beta and λ \lambda are coprime positive integers, find α + β + λ \alpha + \beta + \lambda .


The answer is 12.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rocco Dalto
Aug 1, 2018

Let x < 1 |x| < 1 .

f ( x ) = n = 0 ( a + n d ) x n = a n = 0 x n + d n = 1 n x n = f(x) = \sum_{n = 0}^{\infty} (a + nd)x^n = a\sum_{n = 0}^{\infty} x^n + d\sum_{n = 1}^{\infty} nx^n = a 1 x + d j = 1 n = j x n = \dfrac{a}{1 - x} + d\sum_{j = 1}^{\infty}\sum_{n = j}^{\infty} x^n = a 1 x + d 1 x j = 1 x j = a 1 x + d 1 x ( x 1 x ) = a 1 x + d x ( 1 x ) 2 \dfrac{a}{1 - x} + \dfrac{d}{1 - x}\sum_{j = 1}^{\infty} x^{j} = \dfrac{a}{1 - x} + \dfrac{d}{1 - x}(\dfrac{x}{1 - x}) = \boxed{\dfrac{a}{1 - x} + \dfrac{dx}{(1 - x)^2}}

and,

g ( x ) = n = 0 ( a + n 2 d ) x n = a n = 0 x n + d n = 1 n 2 x n = a 1 x + d j = 1 n = j n x n = g(x) =\sum_{n = 0}^{\infty} (a^{*} + n^2 d^{*})x^n = a^{*}\sum_{n = 0}^{\infty} x^n + d^{*}\sum_{n = 1}^{\infty} n^2 x^n = \dfrac{a^{*}}{1 - x} + d^{*}\sum_{j = 1}^{\infty}\sum_{n = j}^{\infty} n x^n = ( a 1 x + d j = 1 ( j x j + ( j + 1 ) x j + 1 + ( j + 2 ) x j + 2 + . . . ) = (\dfrac{a^{*}}{1 - x} + d^{*}\sum_{j = 1}^{\infty} (j x^{j} + (j + 1)x^{j + 1} + (j + 2)x^{j + 2} + ... ) = a 1 x + d ( 1 1 x j = 1 j x j + x ( 1 x ) 2 j = 1 x j ) = \dfrac{a^{*}}{1 - x} + d^{*}(\dfrac{1}{1 - x}\sum_{j = 1}^{\infty} j x^{j} + \dfrac{x}{(1 - x)^2}\sum_{j = 1}^{\infty} x^{j}) = a 1 x + d ( ( 1 1 x ) ( x ( 1 x ) 2 ) + ( x ( 1 x ) 2 ) ( x 1 x ) ) = a 1 x + d ( x 2 + x ( 1 x ) 3 ) \dfrac{a^{*}}{1 - x} + d^{*}((\dfrac{1}{1 - x})(\dfrac{x}{(1 - x)^2}) + (\dfrac{x}{(1 - x)^2})(\dfrac{x}{1 - x})) = \boxed{\dfrac{a^{*}}{1 - x} + d^{*}(\dfrac{x^2 + x}{(1 - x)^3})}

f ( 1 2 ) = 2 f(\dfrac{1}{2}) = 2 and f ( 1 2 ) = 2 9 f(-\dfrac{1}{2}) = \dfrac{2}{9} \implies

3 a d = 1 3a - d = 1

a + d = 1 a + d = 1

a = 1 2 = d f ( x ) = 1 2 ( 1 ( 1 x ) 2 ) 1 2 1 2 f ( x ) d x = 1 2 ( 1 1 x ) 1 2 1 2 = 2 3 \implies a = \dfrac{1}{2} = d \implies f(x) = \dfrac{1}{2}(\dfrac{1}{(1 - x)^2}) \implies \displaystyle\int_{-\frac{1}{2}}^{\frac{1}{2}} f(x) dx = \dfrac{1}{2}(\dfrac{1}{1 - x})|_{-\frac{1}{2}}^{\frac{1}{2}} = \boxed{\dfrac{2}{3}}

g ( 1 2 ) = 2 g(\dfrac{1}{2}) = 2 and g ( 1 2 ) = 2 9 g(-\dfrac{1}{2}) = \dfrac{2}{9} \implies

9 a d = 3 9a^{*} - d^{*} = 3

a + 3 d = 1 a^{*} + 3d^{*} = 1

a = 5 14 \implies a^{*} = \dfrac{5}{14} and d = 3 14 d^{*} = \dfrac{3}{14} g ( x ) = 1 14 ( 5 1 x + 3 ( x 2 + x ) ( 1 x ) 3 ) \implies g(x) = \dfrac{1}{14}(\dfrac{5}{1 - x} + \dfrac{3(x^2 + x)}{(1 - x)^3})

Let I ( x ) = g ( x ) d x I(x) = \displaystyle\int g(x) dx .

Let u = 1 x x = 1 u u = 1 - x \implies x = 1 - u and d x = d u dx = -du I ( x ) = 1 14 ( 5 1 x d x 3 ( 1 u 3 u 2 + 2 u 3 ) d u ) = 1 14 ( 5 ln ( 1 x ) 3 ( ln ( u ) + 3 u 1 u 2 ) ) = \implies I(x) = \dfrac{1}{14}(\displaystyle\int \dfrac{5}{1 - x} dx - 3\int (\dfrac{1}{u} - 3u^{-2} + 2u^{-3}) du) = \dfrac{1}{14}(-5\ln(1 - x) - 3(\ln(u) + \dfrac{3}{u} - \dfrac{1}{u^2})) = 1 14 ( 5 ln ( 1 x ) 3 ln ( 1 x ) 9 1 x + 3 ( 1 x ) 2 ) = 1 14 ( 8 ln ( 1 x ) + 9 x 6 ( 1 x ) 2 ) \dfrac{1}{14}(-5\ln(1 - x) - 3\ln(1 - x) - \dfrac{9}{1 - x} + \dfrac{3}{(1 - x)^2}) = \dfrac{1}{14}(-8\ln(1 - x) + \dfrac{9x - 6}{(1 - x)^2}) \implies

1 2 1 2 g ( x ) d x = 1 14 ( 8 ln ( 3 ) 12 9 ) \displaystyle\int_{-\frac{1}{2}}^{\frac{1}{2}} g(x) dx = \boxed{\dfrac{1}{14}(8\ln(3) - \dfrac{12}{9})}

1 2 1 2 f ( x ) g ( x ) d x = 4 7 ( 4 3 ln ( 3 ) ) = \implies \displaystyle\int_{-\frac{1}{2}}^{\frac{1}{2}} f(x) - g(x) dx = \dfrac{4}{7}(\dfrac{4}{3} - \ln(3)) = 2 2 7 ( 2 2 3 ln ( 3 ) ) = α α β ( α α λ ln ( λ ) ) α + β + λ = 12 \dfrac{2^2}{7}(\dfrac{2^2}{3} - \ln(3)) = \dfrac{{\alpha}^{\alpha}}{\beta}(\dfrac{{\alpha}^{\alpha}}{\lambda} - \ln(\lambda)) \implies \alpha + \beta + \lambda = \boxed{12} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...