Arithmetic - Geometric Series Duality

Algebra Level 3

n = 1 n 3 n = 1 3 + 2 9 + 3 27 + 4 81 + \large \sum _{ n=1 }^{ \infty }{ \frac { n }{ { 3 }^{ n } } } =\frac { 1 }{ 3 } +\frac { 2 }{ 9 } +\frac { 3 }{ 27 } +\frac { 4 }{ 81 } +\cdots

If the sum of the series above is in the form of a b \dfrac ab , where a a and b b are coprime positive integers, compute a × b a\times b .

If you think the series diverges, enter the answer as -1.


The answer is 12.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Rishabh Jain
Feb 17, 2016

S = 1 3 + 2 9 + 3 27 + 4 81 + \mathfrak{S}=\frac { 1 }{ 3 } +\frac { 2 }{ 9 } +\frac { 3 }{ 27 } +\frac { 4 }{ 81 } +\dots~~~~~~ 1 3 S = 1 9 + 2 27 + 3 81 + 4 243 + \dfrac{1}{3}\mathfrak{S}=~~~~~~~~\frac { 1 }{9 } +\frac { 2 }{ 27} +\frac { 3 }{ 81 } +\frac { 4 }{ 243} +\dots Subtracting we get: 2 3 S = 1 3 + 1 9 + 1 27 + 1 81 + 1 243 + \dfrac{2}{3}\mathfrak{S}=\frac { 1 }{ 3 }+ \frac { 1 }{9 } +\frac { 1}{ 27} +\frac { 1 }{ 81 } +\frac { 1 }{ 243} +\dots (Infinite GP) \color{#D61F06}{\mathcal{\text{(Infinite GP)}}} S = 3 2 ( 1 3 1 1 3 ) = 3 4 \large \Rightarrow \mathfrak{S}=\dfrac{3}{2}(\dfrac{\frac{1}{3}}{1-\frac{1}{3}})=\dfrac{3}{4} 3 × 4 = 12 \huge\therefore~ 3\times 4=\boxed{\color{#007fff}{12}}

Arulx Z
Feb 17, 2016

S = 1 3 + 2 9 + 3 27 + 4 81 + S 3 = 1 9 + 2 27 + 3 81 + 4 243 + S S 3 = 1 3 + 1 9 + 1 27 + 1 81 + ( GP ) S=\frac { 1 }{ 3 } +\frac { 2 }{ 9 } +\frac { 3 }{ 27 } +\frac { 4 }{ 81 } +\dots \\ \\ \frac { S }{ 3 } =\frac { 1 }{ 9 } +\frac { 2 }{ 27 } +\frac { 3 }{ 81 } +\frac { 4 }{ 243 } +\dots \\ \\ S-\frac { S }{ 3 } =\frac { 1 }{ 3 } +\frac { 1 }{ 9 } +\frac { 1 }{ 27 } +\frac { 1 }{ 81 } +\dots \quad \left( \text{GP} \right)

The GP can be simplified as

2 3 S = 1 3 1 1 3 = 1 2 S = 3 4 \frac { 2 }{ 3 } S=\frac { \frac { 1 }{ 3 } }{ 1-\frac { 1 }{ 3 } } =\frac { 1 }{ 2 } \\ S=\frac { 3 }{ 4 }

Therefore, the answer is 3 4 = 12 3 \cdot 4 = \boxed { 12 } .

Moderator note:

Simple standard approach.

Andrew Yates
Feb 19, 2016

This may be overcomplicating things... but I think it's a bit more rigorous than other solutions.

Start with the m m th partial sum S m = n = 0 m n 3 n S m + m + 1 3 m + 1 = n = 1 m + 1 n 3 n = n = 0 m n + 1 3 n + 1 = 1 3 n = 0 m n + 1 3 n = 1 3 n = 0 m ( n 3 n + 1 3 n ) = 1 3 S m + 1 3 n = 0 m ( 1 3 ) n . S_m = \sum_{n=0}^m \frac{n}{3^n} \\ S_m + \frac{m+1}{3^{m+1}} = \sum_{n=1}^{m+1} \frac{n}{3^n}\\ = \sum_{n=0}^{m} \frac{n+1}{3^{n+1}} = \frac{1}{3} \sum_{n=0}^{m} \frac{n+1}{3^n} = \frac{1}{3} \sum_{n=0}^{m} \Big( \frac{n}{3^n} + \frac{1}{3^n} \Big) = \frac{1}{3} S_m + \frac{1}{3} \sum_{n=0}^{m} \big(\frac{1}{3}\big)^n .\\

So, just to rewrite the equation before doing some algebra:

S m + m + 1 3 m + 1 = 1 3 S m + 1 3 n = 0 m ( 1 3 ) n 2 S m = n = 0 m ( 1 3 ) n m + 1 3 m S_m + \frac{m+1}{3^{m+1}} = \frac{1}{3} S_m + \frac{1}{3} \sum_{n=0}^{m} \big(\frac{1}{3}\big)^n \\ 2 S_m = \sum_{n=0}^{m} \big(\frac{1}{3}\big)^n - \frac{m+1}{3^{m}}

Now, letting m m \rightarrow \infty , we find that the first sum on the right is just an infinite GP and the second term vanishes:

2 S = 1 1 1 3 0 S = 3 4 2 S = \frac{1}{1 - \frac{1}{3}} - 0 \\ S = \frac{3}{4}

Gonçalo Vieira
Oct 25, 2019

Starting with:

n = 1 n 3 n \sum_{n=1}^{\infty} \frac{n}{3^{n}} = n = 1 n x n \sum_{n=1}^{\infty} nx^{n} , where x = x= 1 3 \frac{1}{3} , but:

n = 1 n x n \sum_{n=1}^{\infty} nx^{n} = x × n = 1 n x n 1 x \times \sum_{n=1}^{\infty} nx^{n-1} = x × ( n = 1 x n ) x\times(\sum_{n=1}^{\infty} x^{n})' = x × ( 1 1 x 1 ) x\times(\frac{1}{1-x}-1)' = x ( 1 x ) 2 \frac{x}{(1-x)^2}

So as x= 1 3 \frac{1}{3} :

n = 1 n 3 n \sum_{n=1}^{\infty} \frac{n}{3^{n}} = 1 3 ( 1 1 3 ) 2 \frac{\frac{1}{3}}{(1-\frac{1}{3})^2} = 3 4 \frac{3}{4} , so the answer is 3 × 4 = 12 3\times4=12 .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...