Arithmetic Mean

Number Theory Level pending

If a a is the arithmetic mean of 3 numbers and b b is the arithmetic mean of their squares, then find the arithmetic mean of their pairwise products in terms of a a and b b .

3 a 2 b 2 \frac{3a^{2}-b}{2} b 3 a 2 2 \frac{b-3a^{2}}{2} 3 a 2 + b 2 \frac{3a^{2}+b}{2} b 2 3 a 2 2 \frac{b^{2}-3a^{2}}{2}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Satwik Murarka
Oct 6, 2016

Let the three numbers be x,y and z a = x + y + z 3 b = x 2 + y 2 + z 2 3 Let the A.M. pair-wise product be α α = x y + y z + x z 3 We know that, x y + y z + x z = ( x + y + z ) 2 ( x 2 + y 2 + z 2 ) 2 α = ( x + y + z ) 2 ( x 2 + y 2 + z 2 ) 6 α = 9 a 2 3 b 6 α = 3 a 2 b 2 \text{Let the three numbers be x,y and z}\\ a=\frac{x+y+z}{3}\\ b=\frac{x^{2}+y^{2}+z^{2}}{3}\\ \text{Let the A.M. pair-wise product be}\ \alpha\\ \alpha=\frac{xy+yz+xz}{3}\\ \text{We know that,}\\ xy+yz+xz=\frac{(x+y+z)^{2}-(x^{2}+y^{2}+z^{2})}{2}\\ \implies\ \alpha=\frac{(x+y+z)^{2}-(x^{2}+y^{2}+z^{2})}{6}\\ \alpha=\frac{9a^{2}-3b}{6}\\ \alpha=\boxed{\frac{3a^{2}-b}{2}}

Let the three numbers be x x , y y and z z , then a = x + y + z 3 a = \dfrac {x+y+z}3 , b = x 2 + y 2 + z 2 3 b = \dfrac {x^2+y^2+z^2}3 and the pairwise arithmetic mean is x y + y z + z x 3 \dfrac {xy+yz+zx}3 . We know that:

( x + y + z ) 2 = x 2 + y 2 + z 2 + 2 ( x y + y z + z x ) 2 ( x y + y z + z x ) = ( x + y + z ) 2 x 2 + y 2 + z 2 = ( 3 a ) 2 3 b x y + y z + z x 3 = ( 3 a ) 2 3 b 6 = 3 a 2 b 2 \begin{aligned} (x+y+z)^2 & = x^2+y^2+z^2 + 2(xy+yz+zx) \\ \implies 2(xy+yz+zx) & = (x+y+z)^2 - x^2+y^2+z^2 \\ & = (3a)^2 - 3b \\ \implies \frac {xy+yz+zx}3 & = \frac {(3a)^2 - 3b}6 \\ & = \boxed{\dfrac {3a^2-b}2} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...