Arithmetic over Geometric

Algebra Level 3

n = 1 n 2 n = ? \large \sum_{n=1}^{\infty} \frac{n}{2^n} = \, ?


The answer is 2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Andrew Lin
Jun 14, 2016

You can see that this series equals: 1 2 \frac{1}{2} + 2 4 \frac{2}{4} + 3 8 \frac{3}{8} + 4 16 \frac{4}{16} +...

= ( 1 2 \frac{1}{2} + 1 4 \frac{1}{4} + 1 8 \frac{1}{8} + 1 16 \frac{1}{16} +...)+( 1 4 \frac{1}{4} + 1 8 \frac{1}{8} + 1 16 \frac{1}{16} +...)+( 1 8 \frac{1}{8} + 1 16 \frac{1}{16} +...)+...

= 1 1 + 1 2 \frac{1}{2} + 1 4 \frac{1}{4} + 1 8 \frac{1}{8} +...

= 2 2

1 1 x = n = 0 x n , x < 1 \dfrac{1}{1-x} = \displaystyle \sum_{n=0}^{\infty} x^{n} , |x| < 1
Differentiating,
1 ( 1 x ) 2 = n = 0 n x n 1 \dfrac{1}{(1-x)^2} = \displaystyle \sum_{n=0}^{\infty} nx^{n-1}
Multiply by x,
n = 0 n x n = x ( 1 x ) 2 \displaystyle \sum_{n=0}^{\infty} nx^{n} = \dfrac{x}{(1-x)^2}
Put x = 1 2 x = \dfrac{1}{2}
n = 0 n 2 n = 2 \displaystyle \sum_{n=0}^{\infty} \dfrac{n}{2^n} = 2



That's a great solution! I didn't even think of that.

Andrew Lin - 5 years ago
Arulx Z
Jun 16, 2016

S = 1 2 + 2 4 + 3 8 + S 2 = 1 4 + 2 8 + 3 16 + S S 2 = 1 2 + 1 4 + 1 8 + \begin{matrix} S & = & \frac { 1 }{ 2 } +\frac { 2 }{ 4 } +\frac { 3 }{ 8 } +\cdots \\ \frac { S }{ 2 } & = & \frac { 1 }{ 4 } +\frac { 2 }{ 8 } +\frac { 3 }{ 16 } +\cdots \\ S-\frac { S }{ 2 } & = & \frac { 1 }{ 2 } +\frac { 1 }{ 4 } +\frac { 1 }{ 8 } +\cdots \end{matrix}

This is a Geometric Progression. Using the formula,

S S 2 = 1 2 1 1 2 S 2 = 1 S = 2 \begin{matrix} S-\frac { S }{ 2 } & = & \frac { \frac { 1 }{ 2 } }{ 1-\frac { 1 }{ 2 } } \\ \frac { S }{ 2 } & = & 1 \\ S & = & 2 \end{matrix}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...