Arithmetic Series on Factorials

Calculus Level 3

a n = 1 + 6 ( n 1 ) b n = 1 + 21 ( n 1 ) c n = 202 + 102 ( n 1 ) \begin{aligned} a_n&=1+6(n-1) \\ b_n&=1+21(n-1) \\ c_n&=202+102(n-1) \end{aligned}

Given the above, what is the value of

1 2 ! + 1 3 ! + a 1 4 ! + b 1 5 ! + c 1 6 ! + a 2 7 ! + b 2 8 ! + c 2 9 ! + a 3 10 ! + b 3 11 ! + c 3 12 ! + ? \displaystyle \frac 1{2!}+\frac 1{3!}+\frac {a_1}{4!}+\frac {b_1}{5!}+\frac {c_1}{6!}+\frac {a_2}{7!}+\frac {b_2}{8!}+\frac {c_2}{9!}+\frac {a_3}{10!}+\frac {b_3}{11!}+\frac {c_3}{12!}+\cdots\, ?


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

S = 1 2 ! + 1 3 ! + 1 4 ! + 1 5 ! + 202 6 ! + 7 7 ! + 22 8 ! + 304 9 ! + 13 10 ! + 43 11 ! + 406 12 ! + a n = 1 + 6 ( n 1 ) = 2 ( 3 n + 1 ) 7 b n = 1 + 21 ( n 1 ) = 7 ( 3 n + 2 ) 34 c n = 202 + 102 ( n 1 ) = 34 ( 3 n + 3 ) 2 S = 1 2 ! + 3 2 3 ! + 4 × 2 7 4 ! + 5 × 7 34 5 ! + 6 × 34 2 6 ! + 7 × 2 7 7 ! + 8 × 7 34 8 ! + 9 × 34 2 9 ! + 10 × 2 7 10 ! + 11 × 7 34 11 ! + 12 × 34 2 12 ! + = 1 2 ! + 1 2 ! 2 3 ! + 2 3 ! 7 4 ! + 7 4 ! 34 5 ! + 34 5 ! 2 6 ! + 2 6 ! 7 7 ! + 7 7 ! 34 8 ! + = 1 \begin{aligned} S & = \frac 1{2!}+\frac 1{3!}+\frac 1{4!}+\frac 1{5!}+\frac {202}{6!}+\frac {7}{7!}+\frac {22}{8!}+\frac {304}{9!}+\frac {13}{10!}+\frac {43}{11!}+\frac {406}{12!}+\cdots \\ & \because a_n=1+6\cdot(n-1)=2\cdot(3n+1)-7 \\ & b_n=1+21\cdot(n-1)=7\cdot(3n+2)-34 \\ & c_n=202+102\cdot(n-1)=34\cdot(3n+3)-2 \\ \therefore S & = \frac 1{2!}+\frac {3-2}{3!}+\frac {4\times2-7}{4!}+\frac {5\times7-34}{5!}+\frac {6\times34-2}{6!}+\frac {7\times2-7}{7!}+\frac {8\times7-34}{8!}+\frac {9\times34-2}{9!}+\frac {10\times2-7}{10!}+\frac {11\times7-34}{11!}+\frac {12\times34-2}{12!}+\cdots \\ & = \frac 1{2!}+\frac 1{2!}-\frac 2{3!}+\frac 2{3!}-\frac 7{4!}+\frac 7{4!}-\frac {34}{5!}+\frac {34}{5!}-\frac 2{6!}+\frac 2{6!} -\frac 7{7!}+\frac 7{7!}-\frac {34}{8!}+\cdots \\ & = \boxed{1} \end{aligned}

Challenge: Why applying the above procedure and the answer we obtain is correct , but e 2 = 1 e-2=1 obtained using the above procedure is incorrect.

See e 2 = 1 e-2=1

In e-2=1 series doesn't converge

Shibashis Das - 3 years, 4 months ago

Same as my method.Just applying basic concepts of telescoping series.

D K - 2 years, 11 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...