Find a triple of rational numbers ( a , b , c ) such that
3 3 2 − 1 = 3 a + 3 b + 3 c .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Problem Loading...
Note Loading...
Set Loading...
Relevant wiki: Rational Numbers - Problem Solving
3 3 2 − 1 = 3 a + 3 b + 3 c .
Let x = 3 2 − 1 and y = 3 2 . Then y 3 = 2 , x = 3 y − 1 Note that
1 = y 3 − 1 = ( y − 1 ) ( y 2 + y + 1 ) and
y 2 + y + 1 = 3 3 y 2 + 3 y + 3 = 3 y 3 + 3 y 2 + 3 y + 1 = 3 ( y + 1 ) 3 which implies that
x 3 = y − 1 = y 2 + y + 1 1 = ( y + 1 ) 3 3
or
x = y + 1 3 3 . . . . . . . ( 1 )
on the other hand
3 = y 3 + 1 = ( y + 1 ) ( y 2 − y + 1 )
from which it follows that
y + 1 1 = y 3 + 1 y 2 − y + 1 = 3 y 2 − y + 1 . . . . . . . . ( 2 )
Combine ( 1 ) and ( 2 ) , We obtain
x = 3 9 1 ( 3 4 − 3 2 + 1 )
Consequently
( a , b , c ) = ( 9 4 , 9 − 2 , 9 1 ) is a desired triple.