[ARML 1997]

Algebra Level 4

Find a triple of rational numbers ( a , b , c ) (a, b, c) such that

2 3 1 3 = a 3 + b 3 + c 3 . \large \sqrt[3]{\sqrt[3]{2}-1} = \sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}.

( 4 9 , 2 9 , 1 9 ) \left(\frac{4}{9},\frac{-2}{9},\frac{1}{9}\right) ( 5 9 , 2 9 , 1 9 ) \left(\frac{-5}{9},\frac{-2}{9},\frac{1}{9}\right) ( 6 9 , 2 9 , 2 9 ) \left(\frac{-6}{9},\frac{-2}{9},\frac{2}{9}\right) ( 2 9 , 3 9 , 4 9 ) \left(\frac{2}{9},\frac{3}{9},\frac{4}{9}\right) ( 1 9 , 1 9 , 3 9 ) \left(\frac{-1}{9},\frac{1}{9},\frac{3}{9}\right)

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Novril Razenda
Jul 4, 2016

Relevant wiki: Rational Numbers - Problem Solving

2 3 1 3 = a 3 + b 3 + c 3 . \large \sqrt[3]{\sqrt[3]{2}-1} = \sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}.

Let x = 2 3 1 x=\sqrt[3]{2}-1 and y = 2 3 y=\sqrt[3]{2} . Then y 3 = 2 y^3=2 , x = y 3 1 x=\sqrt[3]{y}-1 Note that

1 = y 3 1 = ( y 1 ) ( y 2 + y + 1 ) 1=y^3-1=(y-1)(y^2+y+1) and

y 2 + y + 1 = 3 y 2 + 3 y + 3 3 = y 3 + 3 y 2 + 3 y + 1 3 = ( y + 1 ) 3 3 y^2+y+1=\frac{3y^2+3y+3}{3}=\frac{y^3+3y^2+3y+1}{3}=\frac{(y+1)^3}{3} which implies that

x 3 = y 1 = 1 y 2 + y + 1 = 3 ( y + 1 ) 3 x^3=y-1=\frac{1}{y^2+y+1}=\frac{3}{(y+1)^3}

or

x = 3 3 y + 1 . . . . . . . ( 1 ) x=\frac{\sqrt[3]{3}}{y+1}.......(1)

on the other hand

3 = y 3 + 1 = ( y + 1 ) ( y 2 y + 1 ) 3=y^3+1=(y+1)(y^2-y+1)

from which it follows that

1 y + 1 = y 2 y + 1 y 3 + 1 = y 2 y + 1 3 . . . . . . . . ( 2 ) \frac{1}{y+1}=\frac{y^2-y+1}{y^3+1}=\frac{y^2-y+1}{3}........(2)

Combine ( 1 ) (1) and ( 2 ) (2) , We obtain

x = 1 9 3 ( 4 3 2 3 + 1 ) x=\sqrt[3]{\frac{1}{9}}(\sqrt[3]{4}-\sqrt[3]{2}+1)

Consequently

( a , b , c ) = ( 4 9 , 2 9 , 1 9 ) (a,b,c)=(\frac{4}{9},\frac{-2}{9},\frac{1}{9}) is a desired triple.

not looking for x, the solution is wrong

james zhu - 1 month, 1 week ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...