Art of transpose matrix

Algebra Level 5

Let E E and M M be 3 × 3 3 \times 3 matrices satisfy the system of equations below and I I denotes the identity matrix:

{ E M T = ( E M ) T = 20 I ( E + M ) T = 17 ( E M ) T \large \begin{cases} EM^{T} = (EM)^{T} = 20 I \\ (E+M)^{T} = 17(E-M)^{T} \end{cases}

If E 2 + M 2 E^2+M^2 is of the form a b I \dfrac{a}{b}I , where a a and b b are co-prime, find a + b a+b .


The answer is 743.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Tommy Li
Oct 7, 2017

E M T = M T E T = 20 I { E = E T = 20 ( M 1 ) T M = M T = 20 ( E 1 ) T ( E + M ) T = 17 ( E M ) T E T + M T = 17 ( E T M T ) { E + 20 E 1 = 17 ( E 20 E 1 ) 20 M 1 + M = 17 ( 20 M 1 M ) { E = ± 3 10 2 I M = ± 4 10 3 I E 2 + M 2 = ( ± 3 10 2 I ) 2 + ( ± 4 10 3 I ) 2 = 725 18 I a + b = 725 + 18 = 743 EM^T=M^TE^T= 20I \\ \Rightarrow\begin{cases} E=E^T=20(M^{-1})^T \\ M=M^T=20(E^{-1})^T \end{cases} \\ \\ (E+M)^T=17(E-M)^T \\ E^T+M^T=17(E^T-M^T) \\ \Rightarrow \begin{cases} E+20E^{-1} = 17(E-20E^{-1}) \\ 20M^{-1}+M = 17(20M^{-1}-M) \end{cases} \\ \Rightarrow \begin{cases} E = \pm \frac{3\sqrt{10}}{2}I \\ M = \pm \frac{4\sqrt{10}}{3}I \end{cases} \\ E^2+M^2 = \left(\pm \dfrac{3\sqrt{10}}{2}I\right)^2 + \left(\pm \dfrac{4\sqrt{10}}{3}I\right)^2 = \dfrac{725}{18}I \\ \Rightarrow a+b =725+18 =743

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...