As simple as it looks

Geometry Level 2

sin 2 A 1 + cos 2 A \large \dfrac{\sin 2A}{1 + \cos 2A}

Simplify the trigonometric expression above.

cot A \cot A tan 2 A \tan 2A cot 2 A \cot 2A sin A \sin A tan A \tan A cos A \cos A None of these choices

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Ikkyu San
Apr 8, 2016

sin 2 A 1 + cos 2 A = 2 sin A cos A 1 + 2 cos 2 A 1 = 2 sin A cos A 2 cos A cos A = sin A cos A = tan A \dfrac{\sin{2A}}{1+\cos{2A}}=\dfrac{2\sin{A}\cos{A}}{1+2\cos^2{A}-1}=\dfrac{2\sin{A}\cos{A}}{2\cos{A}\cos{A}}=\dfrac{\sin{A}}{\cos{A}}=\boxed{\tan{A}}

Perfect Ikkyu !

Abhiram Rao - 5 years, 2 months ago
Samarth K
Apr 8, 2016

sin2A/(1+cos2A)= 2sinAcosA/[1+(cos^{2}A-sin^{2}A)
[As sin2A=2sinAcosA and cos2A=cos^{2}A-sin^{2}A]
= 2sinAcosA/(sin^{2}A+cos^{2}A+cos^{2}A-sin^{2}A)
[As sin^{2}A+cos^{2}A=1]
=2sinAcosA/2cos^{2}A
=sinA/cosA= TanA


0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...