ASA Formula for Area

Geometry Level 3

The formula for finding the area of a triangle based on just one side and the angles is:

A = a 2 sin ( β + γ ) 4 ( 1 cos α ) A=\dfrac{a^2\sin(\beta+\gamma)}{4(1-\cos\alpha)} A = a 2 sin α 8 cos β cos γ A=\dfrac{a^2\sin \alpha}{8\cos \beta\cos\gamma} A = sin β sin γ sin α ( a 2 ) 2 A=\dfrac{ \sin \beta\sin\gamma}{\sin\alpha}\left(\dfrac a2\right)^2 A = a 2 sin β sin γ 2 sin α A=\dfrac{a^2\sin \beta\sin\gamma}{2\sin\alpha} A = a 2 sin β sin γ 2 cos α A=\dfrac{a^2\sin \beta\sin\gamma}{2\cos \alpha}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Marta Reece
May 30, 2017

Area of triangle based on two sides and their enclosed angle is: A = 1 2 a b sin γ A=\dfrac 12 ab\sin\gamma

Side b b can be expressed in terms of a a using the law of sines: b sin β = a sin α \dfrac{b}{\sin\beta}=\dfrac{a}{\sin\alpha}

b = a sin β sin α b=\dfrac{a\sin\beta}{\sin\alpha}

Substituting that into the equation for area results is a formula

A = 1 2 a a sin β sin α sin γ = a 2 sin β sin γ sin α A=\dfrac 12 a\dfrac{a\sin\beta}{\sin\alpha}\sin\gamma=\dfrac {a^2\sin\beta\sin\gamma }{\sin\alpha}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...