Astroid

Calculus Level 3

( x a ) 2 3 + ( y a ) 2 3 = 1 \large \left(\dfrac{x}{a}\right)^{\frac{2}{3}} + \left(\dfrac{y}{a}\right)^{\frac{2}{3}} = 1

The equation above shows an equation of an astroid with positive constant a a , find the area enclosed by the astroid in terms of a a .

π a 2 2 \dfrac{\pi a^2}{2} a 2 π 4 \dfrac{a^2\pi}{4} a 2 π 8 \dfrac{a^2\pi}{8} 3 π a 2 8 \dfrac{3\pi a^2}{8}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

S u b s t i t u t i n g {Substituting} x { x} = a ( cos θ ) 3 a(\cos \theta)^3 & y = a ( sin θ ) 3 a(\sin\theta)^3

A r e a {Area} = y d x \int ydx

x {x} = a ( cos θ ) 3 a(\cos\theta)^3

d x {dx} = 3 a ( cos θ ) 2 × ( s i n θ ) d θ 3a(\cos\theta)^2 \ \times-(sin\theta) d\theta A r e a {Area } = a ( sin θ ) 3 × 3 a ( cos θ ) 2 × ( sin θ ) d θ \int a(\sin\theta)^3 \times -3a(\cos\theta)^2 \times (\sin\theta) d\theta

A r e a {Area } = 3 a 2 ( sin θ ) 3 ( cos θ ) 2 × ( sin θ ) d θ -3a^2\int (\sin\theta)^3 (\cos\theta)^2 \times (\sin\theta) d\theta

T o t a l { Total} A r e a {Area} e n c l o s e d ( A ) { enclosed (A)} = 4 × 4 \times 3 a 2 0 π / 2 ( sin θ ) 4 ( cos θ ) 2 d θ -3a^2\int_{0}^{\pi/2}( \sin\theta)^4( \cos\theta)^2 d\theta

0 π / 2 ( sin θ ) 4 ( cos θ ) 2 d θ \int_{0}^{\pi/2} (\sin\theta)^4 (\cos\theta)^2 d\theta = Γ \Gamma 4 + 1 2 \frac{4+1}{2} Γ \Gamma 2 + 1 2 \frac{2+1}{2} × \times 1 2 \dfrac {1}{2} × \times 1 / Γ 1/ \Gamma 4 + 2 + 2 2 \frac{4+2+2}{2}

0 π / 2 ( sin θ ) 4 ( cos θ ) 2 d θ \int_{0}^{\pi/2} (\sin\theta)^4 (\cos\theta)^2 d\theta = Γ \Gamma 5 2 \dfrac{5}{2} Γ \Gamma 3 2 \dfrac{3}{2} × \times 1 2 \dfrac {1}{2} × \times 1 Γ 4 \dfrac{1}{\Gamma 4}

0 π / 2 ( sin θ ) 4 ( cos θ ) 2 d θ \int_{0}^{\pi/2} (\sin\theta)^4 (\cos\theta)^2 d\theta = 3 8 × π 2 × 3 ! \dfrac { \dfrac{3}{8} \times \pi}{2\times3!}

A { A} = 4 a 2 × 3 × | -4a^2\times 3 \times 3 8 × π 2 × 3 ! \dfrac { \dfrac{3}{8} \times \pi}{2\times3!}|

A { A} = 3 π a 2 8 \dfrac{3 \pi a^2}{8}

Sorry, for the bad latex coding I did with those Gamma functions.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...