Assume that 2 A ( x ) = e x − e − x and A ( B ( x ) ) = x , find the value of B ( 2 e 1 4 4 5 e 2 8 9 0 − 1 ) .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Great solution :) Simple and straightforward.
Oh, that's a really nice observation!
It is worthy to note that if A ( B ( x ) ) = x then, B ( x ) = A − 1 ( x ) , however this solution does not utilize this fact.
We can solve for B ( x ) thusly:
2 A ( B ( x ) ) = 2 x = e B ( x ) − e − B ( x ) ⇒ 2 x e B ( x ) = e 2 B ( x ) − 1
e 2 B ( x ) − 2 x e B ( x ) = 1
e 2 B ( x ) − 2 x e B ( x ) + x 2 = 1 + x 2 .
Let e B ( x ) = u .
Then:
u 2 − 2 u x + x 2 = 1 + x 2 ⇒ ( u − x ) 2 = 1 + x 2 ⇒ u = x + 1 + x 2 .
Therefore:
B ( x ) = ln ( x + 1 + x 2 ) .
Now if we let e 1 4 4 5 = z , then:
B ( 2 e 1 4 4 5 e 2 8 9 0 − 1 ) = B ( 2 z z 2 − 1 ) = ln ( 2 z z 2 − 1 + 1 + ( 2 z z 2 − 1 ) 2 ) .
Expansion and simplification under the square root yields:
ln ( 2 z z 2 − 1 + 4 z 2 z 4 − 2 z 2 + 1 + 4 z 2 ) = ln ( 2 z z 2 − 1 + 4 z 2 z 4 + 2 z 2 + 1 ) = ln ( 2 z z 2 − 1 + 4 z 2 ( z 2 + 1 ) 2 ) = ln ( 2 z z 2 − 1 + 2 z z 2 + 1 ) .
Therefore:
B ( 2 z z 2 − 1 ) = ln ( 2 z 2 z 2 ) = ln ( z ) ,
and:
B ( 2 e 1 4 4 5 e 2 8 9 0 − 1 ) = ln ( e 1 4 4 5 ) = 1 4 4 5 .
In the first part of your solution, you are essentially finding B ( x ) as the inverse of A ( x ) .
Problem Loading...
Note Loading...
Set Loading...
2 A ( x ) ⇒ A ( x ) A ( B ( x ) ) ⇒ sinh ( sinh − 1 x ) ⇒ B ( x ) ⇒ B ( 2 e 1 4 4 5 e 2 8 9 0 − 1 ) = e x − e − x = 2 e x − e − x = sinh x = x = x = sinh − 1 x = sinh − 1 ( 2 e 1 4 4 5 − e − 1 4 4 5 ) = sinh − 1 ( sinh 1 4 4 5 ) = 1 4 4 5