At a function

Algebra Level 3

Assume that 2 A ( x ) = e x e x 2A(x)=e^x-e^{-x} and A ( B ( x ) ) = x A \left( B(x) \right) =x , find the value of B ( e 2890 1 2 e 1445 ) . B \left( \dfrac{e^{2890}-1}{2 e^{1445}}\right).


The answer is 1445.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Chew-Seong Cheong
Jan 13, 2016

2 A ( x ) = e x e x A ( x ) = e x e x 2 = sinh x A ( B ( x ) ) = x sinh ( sinh 1 x ) = x B ( x ) = sinh 1 x B ( e 2890 1 2 e 1445 ) = sinh 1 ( e 1445 e 1445 2 ) = sinh 1 ( sinh 1445 ) = 1445 \begin{aligned} 2 A(x) & = e^x - e^{-x} \\ \Rightarrow A(x) & = \frac{e^x - e^{-x}}{2} = \sinh x \\ A(B(x)) & = x \\ \Rightarrow \sinh \left(\sinh^{-1} x \right) & = x \\ \Rightarrow B(x) & = \sinh^{-1} x \\ \Rightarrow B \left(\frac{e^{2890}-1}{2e^{1445}} \right) & = \sinh^{-1} \left(\frac{e^{1445}-e^{-1445}}{2} \right) \\ & = \sinh^{-1} \left( \sinh 1445 \right) \\ & = \boxed{1445} \end{aligned}

汶汶 樂
Jan 13, 2016

Great solution :) Simple and straightforward.

Pulkit Gupta - 5 years, 5 months ago

Oh, that's a really nice observation!

Calvin Lin Staff - 5 years, 5 months ago
Emile Augustine
Jan 13, 2016

It is worthy to note that if A ( B ( x ) ) = x A(B(x))=x then, B ( x ) = A 1 ( x ) B(x)=A^{-1}(x) , however this solution does not utilize this fact.

We can solve for B ( x ) B(x) thusly:

2 A ( B ( x ) ) = 2 x = e B ( x ) e B ( x ) 2 x e B ( x ) = e 2 B ( x ) 1 2A(B(x))=2x=e^{B(x)}-e^{-B(x)}\Rightarrow 2xe^{B(x)}=e^{2B(x)}-1

e 2 B ( x ) 2 x e B ( x ) = 1 e^{2B(x)}-2xe^{B(x)}=1

e 2 B ( x ) 2 x e B ( x ) + x 2 = 1 + x 2 e^{2B(x)}-2xe^{B(x)}+x^2=1+x^2 .

Let e B ( x ) = u e^{B(x)}=u .

Then:

u 2 2 u x + x 2 = 1 + x 2 ( u x ) 2 = 1 + x 2 u = x + 1 + x 2 u^2-2ux+x^2=1+x^2\Rightarrow (u-x)^2=1+x^2\Rightarrow u=x+\sqrt{1+x^2} .

Therefore:

B ( x ) = ln ( x + 1 + x 2 ) B(x)=\ln (x+\sqrt{1+x^2} ) .

Now if we let e 1445 = z e^{1445}=z , then:

B ( e 2890 1 2 e 1445 ) = B ( z 2 1 2 z ) = ln ( z 2 1 2 z + 1 + ( z 2 1 2 z ) 2 ) B(\frac{e^{2890}-1}{2e^{1445}})=B(\frac{z^2-1}{2z})=\ln\left (\frac{z^2-1}{2z}+\sqrt{1+(\frac{z^2-1}{2z})^2}\right ) .

Expansion and simplification under the square root yields:

ln ( z 2 1 2 z + z 4 2 z 2 + 1 + 4 z 2 4 z 2 ) = ln ( z 2 1 2 z + z 4 + 2 z 2 + 1 4 z 2 ) = ln ( z 2 1 2 z + ( z 2 + 1 ) 2 4 z 2 ) = ln ( z 2 1 2 z + z 2 + 1 2 z ) \ln\left (\frac{z^2-1}{2z}+\sqrt{\frac{z^4-2z^2+1+4z^2}{4z^2}}\right )=\ln\left (\frac{z^2-1}{2z}+\sqrt{\frac{z^4+2z^2+1}{4z^2}}\right )=\ln\left (\frac{z^2-1}{2z}+\sqrt{\frac{(z^2+1)^2}{4z^2}}\right )=\ln\left (\frac{z^2-1}{2z}+\frac{z^2+1}{2z}\right ) .

Therefore:

B ( z 2 1 2 z ) = ln ( 2 z 2 2 z ) = ln ( z ) B(\frac{z^2-1}{2z})=\ln\left (\frac{2z^2}{2z}\right )=\ln(z) ,

and:

B ( e 2890 1 2 e 1445 ) = ln ( e 1445 ) = 1445 B(\frac{e^{2890}-1}{2e^{1445}})=\ln(e^{1445})=\boxed{1445} .

Moderator note:

In the first part of your solution, you are essentially finding B ( x ) B(x) as the inverse of A ( x ) A(x) .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...