Atomic Fusion of Molecular Deuterium

Chemistry Level 2

1 ) 1 2 H + 1 2 H ? ? A + 1 1 p 1) \space \space _1^2H + _1^2H \rightarrow _?^?A + _1^1p 2 ) 1 2 H + 1 2 H ? ? B + 0 1 n 2) \space \space _1^2H + _1^2H \rightarrow _?^?B + _0^1n 3 ) ? ? A + ? ? B ? ? C + 0 1 n + 1 1 p 3) \space \space _?^?A + _?^?B \rightarrow _?^?C + _0^1n + _1^1p Two deuterium ( 1 2 H _1^2H ) atoms have an equal chance of undergoing atomic fusion through reaction 1 1 or 2 2 . A third reaction occurs from the fusion of A A and B B ; the products of the first two reactions; respectively. Determine the identity of C C and give your answer as the mass number \text{mass number} divided by the atomic number \text{atomic number} of C C . K e y : 1 1 p = p r o t o n 0 1 n = n e u t r o n Key: \\ _1^1p = proton \\ _0^1n = neutron


David's Organic Chemistry Set

David's Physical Chemistry Set


The answer is 2.0.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

David Hontz
Jun 27, 2016

1 ) 1 2 H + 1 2 H ? ? A + 1 1 p 1 + 1 1 2 + 2 1 A = 1 3 H 1) _1^2H + _1^2H \rightarrow _?^?A + _1^1p \\ _{1+1-1}^{2+2-1}A = _1^3H 2 ) 1 2 H + 1 2 H ? ? B + 0 1 n 1 + 1 0 2 + 2 1 B = 2 3 H e 2) _1^2H + _1^2H \rightarrow _?^?B + _0^1n \\ _{1+1-0}^{2+2-1}B = _2^3He 3 ) ? ? A + ? ? B = 1 3 H + 2 3 H e ? ? C + 0 1 n + 1 1 p 1 + 2 0 1 3 + 3 1 1 C = 2 4 H e 3) _?^?A + _?^?B = _1^3H + _2^3He \rightarrow _?^?C + _0^1n + _1^1p \\ _{1+2-0-1}^{3+3-1-1}C = _2^4He A n s w e r : 4 2 = 2.0 Answer: \frac{4}{2} = \boxed{2.0}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...