Attractive Couple

There are two identival curves of s i n x sinx .Both of them carry 100 A 100A of current. Both are parallel to X Y X-Y plane. First one has the equation y = s i n x y=sinx , z = 0 z=0 from x = 0 x=0 to x = 2 π x=2π means from position A A to B B . While the other is at z = 1 z=1 , y = s i n x y=sinx from x = 0 x=0 to x = 2 π x=2π . I have provided the figure but u can't see both because they are overlapping each other.

What is the magnitude of the magnetic force exerted by one curve on the other? Details and Assumptions 1) Magnetic permeability μ 0 = 4 π × 1 0 7 \mu_{0}=4π \times 10^{-7}


The answer is 0.012.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Steven Chase
Mar 17, 2020

For every point on Wire 1 1 , integrate over the entire Wire 2 2 using Biot-Savart to find the B field at that point on Wire 1 1 . Then calculate the infinitesimal force on the tiny current-carrying segment of Wire 1 1 . Add up all of these infinitesimal forces.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
import math

# Scan resolution

N = 2000

######################################################

# Constants

u0 = 4.0*math.pi * (10.0**-7.0)
I1 = 100.0
I2 = 100.0

dx1 = 2.0*math.pi/N
dx2 = 2.0*math.pi/N

######################################################
######################################################

# For every point on wire 1, integrate over wire 2 to find the B field
# Then calculate the infinitesimal force contribution to wire 1
# Add up the infinitesimal force contributions

Fx = 0.0
Fy = 0.0
Fz = 0.0

x1 = 0.0

while x1 <= 2.0*math.pi:

    y1 = math.sin(x1)
    z1 = 0.0

    dy1 = math.cos(x1) * dx1
    dz1 = 0.0

    Bx = 0.0
    By = 0.0
    Bz = 0.0

    x2 = 0.0
    z2 = 1.0

    while x2 <= 2.0*math.pi:     # Determine B field at point on wire 1....
                                # by integrating over wire 2
                                # Biot Savart
        y2 = math.sin(x2)             

        dy2 = math.cos(x2) * dx2        
        dz2 = 0.0

        rx = x1 - x2                 
        ry = y1 - y2
        rz = z1 - z2

        r = math.sqrt(rx**2.0 + ry**2.0 + rz**2.0)  

        Bcrossx = dy2*rz - dz2*ry      
        Bcrossy = -(dx2*rz - dz2*rx)
        Bcrossz = dx2*ry - dy2*rx

        dBx = (u0*I2/(4.0*math.pi))*Bcrossx/(r**3.0)  
        dBy = (u0*I2/(4.0*math.pi))*Bcrossy/(r**3.0)
        dBz = (u0*I2/(4.0*math.pi))*Bcrossz/(r**3.0)

        Bx = Bx + dBx
        By = By + dBy
        Bz = Bz + dBz

        x2 = x2 + dx2

    Fcrossx = dy1*Bz - dz1*By        # Add up infinitesimal forces on wire 1
    Fcrossy = -(dx1*Bz - dz1*Bx)     # dF = I*(dL x B)
    Fcrossz = dx1*By - dy1*Bx

    dFx = I1 * Fcrossx
    dFy = I1 * Fcrossy
    dFz = I1 * Fcrossz

    Fx = Fx + dFx            
    Fy = Fy + dFy
    Fz = Fz + dFz

    x1 = x1 + dx1

######################################################
######################################################

# Print results

print N
print ""
print Fx
print Fy
print Fz
print ""
F = math.sqrt(Fx**2.0 + Fy**2.0 + Fz**2.0)

print F

######################################################
######################################################

#1000

#-1.73618460781e-17
#-3.46065898513e-17
#0.0122130707706

#0.0122130707706
#>>> ================================ RESTART ================================
#>>> 
#2000

#-3.97581383573e-17
#5.83027600672e-17
#0.0122048920311

#0.0122048920311
#>>> ================================ RESTART ================================
#>>> 
#5000

#-2.06119414016e-07
#7.64037550909e-07
#0.0121967215849

#0.0121967216105
#>>> 

@Legend of Physics Could you double check your result on the Sinusoid Magnetics Part 3 problem?

Steven Chase - 1 year, 2 months ago

Log in to reply

Yes let me check??

A Former Brilliant Member - 1 year, 2 months ago

@Steven Chase I founded a mistake. Finally reposted and corrected the answer. Thank you

A Former Brilliant Member - 1 year, 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...