August 2018 Geometry#5

Geometry Level pending

In the above figure, F E A D FE\parallel AD and F D A C FD\parallel AC .

If B E = 3 BE =3 , D C = 5 DC =5 , and E D = x ED = x , then find the value of ( 2 x + 3 ) 2 (2x+3)^2 .


The answer is 69.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

X X
Aug 10, 2018

B D : D C = B F : F A = B E : E D \overline{BD}:\overline{DC}=\overline{BF}:\overline{FA}=\overline{BE}:\overline{ED}

So ( x + 3 ) : 5 = 3 : x (x+3):5=3:x ,solving and get ( 2 x + 3 ) 2 = 69 (2x+3)^2=69

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...