August 2018 Geometry#6

Geometry Level 2

In the above figure, A B C D AB\parallel CD . If A B = 20 AB = 20 , B C = 24 BC = 24 , C D = 40 CD =40 , D A = 16 DA = 16 , then find A C 2 AC^2 .


The answer is 1696.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

X X
Aug 10, 2018

A C 2 + D C 2 2 A C × A D cos A C D = A D 2 \overline{AC}^2+\overline{DC}^2-2\overline{AC}\times\overline{AD}\cos{\angle ACD}=\overline{AD}^2

A C 2 + A B 2 2 A C × A B cos B A C = B C 2 \overline{AC}^2+\overline{AB}^2-2\overline{AC}\times\overline{AB}\cos{\angle BAC}=\overline{BC}^2

Let A C = x , A C D = B A C = θ \overline{AC}=x,\angle{ACD}=\angle{BAC}=\theta ,then

x 2 + 1600 80 x cos θ = 256... ( 1 ) x^2+1600-80x\cos\theta=256...(1)

x 2 + 400 40 x cos θ = 576... ( 2 ) x^2+\space\space400-40x\cos\theta=576...(2)

x 2 800 = 896...2 ( 2 ) ( 1 ) x^2-800=896...2(2)-(1)

x 2 = 1696 x^2=1696

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...