Australian Mathematical Olympiad 2010

Algebra Level 4

sin ( x n + 1 x n ) + 3 1 2 n 2 sin ( x n ) sin ( x n + 1 ) = 0 \large\ \sin {( { x }_{ n + 1 } - { x }_{ n }) } + { 3 }^{ \frac { 1-2n }{ 2 } }\sin {( { x }_{ n }) } \sin {( x_{ n + 1 }) } = 0

Let x 1 = tan 1 2 3 > x 2 > x 3 { x }_{ 1 } = \tan ^{ -1 }{ \dfrac { 2 }{ \sqrt { 3 } } } > { x }_{ 2 } > { x }_{ 3 }\cdots be positive real numbers satisfying the equation above for n 1 n \ge 1 . Find the value of lim n x n \displaystyle \lim _{ n\rightarrow \infty }{{ x }_{ n }} .

π 10 \frac {\pi}{10} π 12 \frac {-\pi}{12} π 6 \frac {\pi}{6} π 8 \frac {\pi}{8}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Jan 31, 2018

sin ( x n + 1 x n ) + 3 1 2 n 2 sin x n sin x n + 1 = 0 sin x n + 1 cos x n cos x n + 1 sin x n + 3 1 2 n 2 sin x n sin x n + 1 = 0 Divide both sides by sin x n sin x n + 1 . cot x n cot x n + 1 + 3 1 2 n 2 = 0 \begin{aligned} \sin (x_{n+1}-x_n) + 3^{\frac {1-2n}2} \sin x_n \sin x_{n+1} & = 0 \\ \sin x_{n+1}\cos x_n - \cos x_{n+1}\sin x_n + 3^{\frac {1-2n}2} \sin x_n \sin x_{n+1} & = 0 & \small \color{#3D99F6} \text{Divide both sides by }\sin x_n \sin x_{n+1}. \\ \cot x_n - \cot x_{n+1} + 3^{\frac {1-2n}2} & = 0 \end{aligned}

cot x n + 1 cot x n = 3 1 2 n 2 k = 1 n cot x k + 1 k = 1 n cot x n = k = 1 n 3 1 2 k 2 cot x n + 1 cot x 1 = 3 k = 1 n 3 k cot x n + 1 3 2 = 3 k = 1 n 3 k cot x n + 1 = 3 k = 1 n 3 k + 3 2 lim n cot x n + 1 = 3 3 ( 1 1 1 3 ) + 3 2 = 3 lim n a n = cot 1 3 = π 6 \begin{aligned} \implies \cot x_{n+1} - \cot x_n & = 3^{\frac {1-2n}2} \\ \sum_{k=1}^n \cot x_{k+1} - \sum_{k=1}^n \cot x_n & = \sum_{k=1}^n 3^{\frac {1-2k}2} \\ \cot x_{n+1} - \cot x_1 & = \sqrt 3 \sum_{k=1}^n 3^{-k} \\ \cot x_{n+1} - \frac {\sqrt 3}2 & = \sqrt 3 \sum_{k=1}^n 3^{-k} \\ \implies \cot x_{n+1} & = \sqrt 3 \sum_{k=1}^n 3^{-k} + \frac {\sqrt 3}2 \\ \lim_{n \to \infty} \cot x_{n+1} & = \frac {\sqrt 3}3 \left(\frac 1{1-\frac 13}\right) + \frac {\sqrt 3}2 = \sqrt 3 \\ \implies \lim_{n \to \infty} a_n & = \cot^{-1} \sqrt 3 = \boxed{\dfrac \pi 6} \end{aligned}

Very nice. Much easier than finding a formula for tan ( x n ) , \tan(x_n), which is what I did!

Patrick Corn - 3 years, 4 months ago

Log in to reply

Glad that you like it.

Chew-Seong Cheong - 3 years, 4 months ago

Log in to reply

Did the same

Aditya Kumar - 3 years, 4 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...