Summing Products Of Cosines

Geometry Level 5

Let a = 2 π 2017 a = \dfrac{2\pi}{2017} . Evaluate 1 i < j 2016 ( cos i a ) ( cos j a ) \large \displaystyle \sum_{1 \leq i < j \leq 2016 } (\cos ia)(\cos ja) .


The answer is -503.25.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Manuel Kahayon
May 31, 2016

Relevant wiki: Roots of Unity

First off, we evaluate i = 1 2016 ( cos i a ) \large \displaystyle \sum_{i=1}^{2016} (\cos ia) .

Consider the polynomial x 2016 + x 2015 + . . . + 1 x^{2016}+x^{2015}+...+1 . Then, this polynomial has roots (  cos (ia)+ \sin ia  for i=1,2,...,2016 . So, the sum of the roots of this equation is \frac{-b}{a} = \frac{-1}{1} = -1 by Vieta's formulas. But, since \cos (2\pi - \theta) = -\sin(\theta) , the sum of the roots becomes

i = 1 2016 ( cos i a ) + k = 1 2016 ( i sin k a ) \large \displaystyle \sum_{i=1}^{2016} (\cos ia) + \large \displaystyle \sum_{k=1}^{2016} (i\sin ka)

= i = 1 2016 ( cos i a ) + k = 1 1008 ( i sin k a ) + k = 1 1008 ( i sin ( 2 π k a ) ) = \large \displaystyle \sum_{i=1}^{2016} (\cos ia) + \large \displaystyle \sum_{k=1}^{1008} (i\sin ka) + \large \displaystyle \sum_{k=1}^{1008} (i\sin (2\pi-ka))

= i = 1 2016 ( cos i a ) + k = 1 1008 ( i sin k a ) k = 1 1008 ( i sin k a ) = \large \displaystyle \sum_{i=1}^{2016} (\cos ia) + \large \displaystyle \sum_{k=1}^{1008} (i\sin ka) - \large \displaystyle \sum_{k=1}^{1008} (i\sin ka)

= i = 1 2016 ( cos i a ) = 1 = \large \displaystyle \sum_{i=1}^{2016} (\cos ia) = -1 (Since the sum of the roots is 1 -1 ).

Next, we evaluate i = 1 2016 ( cos 2 i a ) \large \displaystyle \sum_{i=1}^{2016} (\cos^2 ia)

By the identity i = 1 n 1 ( cos 2 2 i π n ) = n 2 2 \large \displaystyle \sum_{i=1}^{n-1} (\cos^2 \frac{2i\pi}{n}) = \frac{n-2}{2} ,

i = 1 2016 ( cos 2 i a ) = 2017 2 2 = 1007.5 \large \displaystyle \sum_{i=1}^{2016} (\cos^2 ia) = \frac{2017-2}{2} = 1007.5

Also, by a little algebraic manipulation,

( i = 1 2016 ( cos i a ) ) 2 = i = 1 2016 ( cos 2 i a ) + 2 ( 1 i < j 2016 ( cos i a ) ( cos j a ) ) \large ( \displaystyle \sum_{i=1}^{2016} (\cos ia))^2 =\displaystyle \sum_{i=1}^{2016} (\cos^2 ia) + 2 (\displaystyle \sum_{1\leq i < j \leq 2016} (\cos ia)(\cos ja))

Now, plugging in the values in the above equation, i.e. i = 1 2016 ( cos i a ) = 1 \large \displaystyle \sum_{i=1}^{2016} (\cos ia) = -1 and i = 1 2016 ( cos 2 i a ) = 1007.5 , \large \displaystyle \sum_{i=1}^{2016} (\cos^2 ia) =1007.5,

( 1 ) 2 = 1007.5 + 2 ( 1 i < j 2016 ( cos i a ) ( cos j a ) ) \large (-1)^2 = 1007.5 + 2 (\displaystyle \sum_{1\leq i < j \leq 2016} (\cos ia)(\cos ja))

2 ( 1 i < j 2016 ( cos i a ) ( cos j a ) ) = 1006.5 \large 2 (\displaystyle \sum_{1\leq i < j \leq 2016} (\cos ia)(\cos ja)) = -1006.5

1 i < j 2016 ( cos i a ) ( cos j a ) = 1006.5 2 = 503.25 \large \displaystyle \sum_{1\leq i < j \leq 2016} (\cos ia)(\cos ja) = \frac {-1006.5}{2} = -503.25

So, our answer is 503.25 \boxed {-503.25}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...