Average abundance of squares

The abundance of an integer n n is defined to be σ ( n ) n \dfrac{\sigma(n)}{n} , where σ \sigma is the divisor sum function . What is the average abundance of the squares? That is to say, what is lim N 1 N N n 1 σ ( n 2 ) n 2 \lim_{N\to \infty} \dfrac{1}{N} \sum_{N\geq n\geq 1} \dfrac{\sigma(n^2)}{n^2}

If the answer is of the form ζ ( a ) ζ ( b ) ζ ( c ) \dfrac{\zeta(a)\zeta(b)}{\zeta(c)} with a , b , c a,b,c integers. Find a b c abc


bonus : generalize for k k th powers and then find the limit as k k\to \infty

Solve the easier version of this: part 1


The answer is 24.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Julian Poon
Apr 11, 2020

Lemma:

Let G ( s ) = n = 1 F ( n ) n s \displaystyle G(s) = \sum_{n=1}^{\infty} \frac{F(n)}{n^s} and F = 1 f F = 1 \star f , where \star is the Dirichlet Convolution . Then lim N 1 N n N F ( n ) = lim s 1 G ( s ) ζ ( s ) \displaystyle \lim_{N\rightarrow \infty} \frac{1}{N}\sum_{n\le N}F(n) = \lim_{s\rightarrow 1}\frac{G(s)}{\zeta(s)}

Proof: lim N 1 N n N F ( n ) = lim N 1 N d N f ( d ) d n , n N 1 = lim N 1 N d N f ( d ) N d = lim N d N f ( d ) d = lim s 1 G ( s ) ζ ( s ) \begin{aligned} \lim_{N\rightarrow \infty} \frac{1}{N}\sum_{n\le N} F(n) &= \lim_{N\rightarrow \infty} \frac{1}{N}\sum_{d\le N}f(d)\sum_{d|n,n\le N}1 \\ &= \lim_{N\rightarrow \infty} \frac{1}{N} \sum_{d\le N} f(d) \left\lfloor \frac{N}{d} \right\rfloor \\ &= \lim_{N\rightarrow \infty} \sum_{d \le N} \frac{f(d)}{d} \\ &= \lim_{s \rightarrow 1} \frac{G(s)}{\zeta(s)} \end{aligned}


Now, using n = 0 F ( n ) n s = p a = 0 F ( p a ) p a s \displaystyle \sum_{n = 0}^{\infty} \frac{F(n)}{n^s} = \prod_{p} \sum_{a=0}^{\infty} \frac{F(p^a)}{p^{as}} , if F F is a multiplicative function,

n = 0 σ ( n k ) n s = p a = 0 1 p a k + 1 1 p = p p s ( p k + p s + 1 p s p ) ( p 1 ) ( p s 1 ) ( p s p k ) \sum_{n = 0}^{\infty} \frac{\sigma(n^k)}{n^s} = \prod_p \sum_{a=0}^{\infty} \frac{1-p^{ak+1}}{1-p} = \prod_p \frac{p^s(p^k+p^{s+1}-p^s-p)}{(p-1)(p^s-1)(p^s-p^k)}

Now let F ( n ) = σ ( n k ) n k \displaystyle F(n) = \frac{\sigma(n^k)}{n^k} , then G ( s ) = n = 1 σ ( n k ) n s + k = p p k + s ( p k + p k + s + 1 p k + s p ) ( p 1 ) ( p k + s 1 ) ( p k + s p k ) = p ( 1 p s + 1 1 p s + k 1 p + 1 ) ( 1 1 p ) ( 1 1 p s + k ) ( 1 1 p s ) \begin{aligned} \displaystyle G(s) &= \sum_{n=1}^{\infty} \frac{\sigma(n^k)}{n^{s+k}} \\ \displaystyle &= \prod_p \frac{p^{k+s}(p^{k}+p^{k+s+1}-p^{k+s}-p)}{(p-1)(p^{k+s}-1)(p^{k+s}-p^{k})} \\ \displaystyle &= \prod_p \frac{\left(\frac{1}{p^{s+1}}-\frac{1}{p^{s+k}}-\frac{1}{p}+1\right)}{\left(1-\frac{1}{p}\right)\left(1-\frac{1}{p^{s+k}}\right)\left(1-\frac{1}{p^{s}}\right)} \end{aligned}

Via the lemma, lim N 1 N n N F ( n ) = lim s 1 p ( 1 p s + 1 1 p s + k 1 p + 1 ) ( 1 1 p ) ( 1 1 p s + k ) \displaystyle \lim_{N\rightarrow \infty} \frac{1}{N}\sum_{n\le N} F(n) = \lim_{s \rightarrow 1} \prod_p \frac{\left(\frac{1}{p^{s+1}}-\frac{1}{p^{s+k}}-\frac{1}{p}+1\right)}{\left(1-\frac{1}{p}\right)\left(1-\frac{1}{p^{s+k}}\right)}

For k = 2 k=2 , this can be expressed as

lim N 1 N n N F ( n ) = p ( 1 1 p + 1 p 2 1 p 3 ) ( 1 1 p ) ( 1 1 p 3 ) = ( 1 1 p 4 ) ( 1 1 p 2 ) ( 1 1 p 3 ) = ζ ( 2 ) ζ ( 3 ) ζ ( 4 ) \lim_{N\rightarrow \infty} \frac{1}{N}\sum_{n\le N} F(n) = \prod_p \frac{\left(1-\frac{1}{p}+\frac{1}{p^{2}}-\frac{1}{p^{3}}\right)}{\left(1-\frac{1}{p}\right)\left(1-\frac{1}{p^{3}}\right)} = \frac{\left(1-\frac{1}{p^{4}}\right)}{\left(1-\frac{1}{p^{2}}\right)\left(1-\frac{1}{p^{3}}\right)} = \frac{\zeta(2)\zeta(3)}{\zeta(4)}

Similarly, for k k \rightarrow \infty , lim N 1 N n N F ( n ) = ζ ( 2 ) ζ ( 3 ) ζ ( 6 ) \displaystyle \lim_{N\rightarrow \infty} \frac{1}{N}\sum_{n\le N} F(n) = \frac{\zeta(2)\zeta(3)}{\zeta(6)} .

As an exercise, try to prove that for all integer 3 k 3 \le k , lim N 1 N n N F ( n ) \displaystyle \lim_{N\rightarrow \infty} \frac{1}{N}\sum_{n\le N} F(n) cannot be expressed as a product of ζ ( i ) j \zeta(i)^j where i 2 i \ge 2 and j j are integers.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...