Average Landing Distance (Part 2)

A massive particle is launched from ground level with a velocity of magnitude v v and a launch angle of θ \theta with respect to the ground.

Suppose a large (essentially infinite) number of launches take place. Over the many trials, θ \theta varies uniformly between 0 0 and π 2 \frac{\pi}{2} , and v v varies uniformly between 0 and v max v_\text{max} .

If there is a uniform downward gravitational acceleration g g , the expected average distance of the landing point from the launch point (assuming level ground) can be expressed as a b v max 2 π g \dfrac{a}{b} \dfrac{v_\text{max}^{2}}{\pi g} , where a a and b b are coprime positive integers.

Determine a + b a+b .


The answer is 5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Steven Chase
Dec 17, 2016

Landing distance d = 2 v 2 sin θ cos θ g d=\frac{{2{v^2}\sin \theta \cos \theta }}{g} d a v = 1 π 2 v max 0 π 2 0 v max 2 v 2 sin θ cos θ g d v d θ = 4 π g v max 0 v max v 2 d v 0 π 2 sin θ cos θ d θ = 4 v max 2 3 π g 0 π 2 sin θ cos θ d θ l e t u = sin θ d u = cos θ d θ d θ = d u cos θ d a v = 4 v max 2 3 π g 0 1 u d u = 2 3 v max 2 π g \begin{gathered} {d_{av}} = \frac{1}{{\frac{\pi }{2}{v_{\max }}}}\int_0^{\frac{\pi }{2}} {\int_0^{{v_{\max }}} {\frac{{2{v^2}\sin \theta \cos \theta }}{g}dvd\theta } } \\ = \frac{4}{{\pi g{v_{\max }}}}\int_0^{{v_{\max }}} {{v^2}dv\int_0^{\frac{\pi }{2}} {\sin \theta \cos \theta d\theta } } \\ = \frac{{4v_{_{\max }}^2}}{{3\pi g}}\int_0^{\frac{\pi }{2}} {\sin \theta \cos \theta d\theta } \\ let\,u = \sin \theta \\ du = \cos \theta d\theta \\ d\theta = \frac{{du}}{{\cos \theta }} \\ {d_{av}} = \frac{{4v_{\max }^2}}{{3\pi g}}\int_0^1 {udu} = \frac{2}{3}\frac{{v_{_{\max }}^2}}{{\pi g}}\\ \end{gathered}

Fantastic!!!

Harry Jones - 4 years, 5 months ago

To simplify this, you could notice that 2 sin(x) cos(x) = sin(2x). So the integral is simplified to v^2*sin(2x)/g

Varun Gudibanda - 4 years, 5 months ago

I really enjoyed this problem, thanks for sharing!

Jack Ceroni - 2 years, 1 month ago

Glad you liked it

Steven Chase - 2 years, 1 month ago
Jack Ceroni
May 14, 2019

First we must consider the fact that the probability of choosing some angle θ \theta between 0 0 and π 2 \frac{\pi}{2} is completely uniform. The same goes for choosing some velocity v v between 0 0 and v m a x v_{max} . We calculate a probability density function for choosing a ( θ , v ) (\theta, \ v) pair by realizing that P ( θ , v ) = C P(\theta, \ v) \ = \ C , where C C is some constant:

0 v m a x 0 π / 2 C d θ dv = C 0 v m a x π 2 dv = C π v m a x 2 = 1 C = 2 π v m a x \displaystyle\int_{0}^{v_{max}} \ \displaystyle\int_{0}^{\pi/2} \ C \ \text{d}\theta \ \text{dv} \ = \ C \ \displaystyle\int_{0}^{v_{max}} \ \frac{\pi}{2} \ \text{dv} \ = \ C\frac{\pi \ v_{max}}{2} \ = \ 1 \ \Rightarrow \ C \ = \ \frac{2}{\pi \ v_{max}}

Notice how I set the integral equal to one, as the probability density function has to be normalized. Next, we have to set up the following equations:

x = v t cos θ y = v t sin θ 1 2 g t 2 x \ = \ vt\cos \theta \ \ \ \ \ \ \ y \ = \ vt\sin \theta \ - \ \frac{1}{2}gt^2

From these equations, we can easily get:

t = x t cos θ y = x t cos θ v sin θ 1 2 g ( x t cos θ ) 2 = x tan θ g x 2 2 v 2 cos 2 θ t \ = \ \frac{x}{t\cos \theta} \ \Rightarrow \ y\ = \ \frac{x}{t\cos \theta} \ v\sin \theta \ - \ \frac{1}{2}g\Big( \frac{x}{t\cos \theta} \Big)^2 \ = \ x\tan \theta \ - \ \frac{gx^2}{2v^2\cos^2\theta}

Since we are interested in range, we can set y = 0 y \ = \ 0 and create a function of the form x ( v , θ ) x(v, \ \theta) :

x tan θ g x 2 2 v 2 cos 2 θ = 0 x tan θ = g x 2 2 v 2 cos 2 θ x = 2 v 2 sin θ cos θ g x\tan \theta \ - \ \frac{gx^2}{2v^2\cos^2\theta} \ = \ 0 \ \Rightarrow \ x\tan \theta \ = \ \frac{gx^2}{2v^2\cos^2\theta} \ \Rightarrow \ x \ = \ \frac{2v^2\sin \theta \cos \theta}{g}

We can now integrate the integral of this form to find the expectation value of our function:

x = a b x P ( x ) dx = 0 v 0 π / 2 2 π v m a x 2 v 2 sin θ cos θ g d θ dv = 2 π v m a x 0 v 2 v 2 g 0 π / 2 sin θ cos θ d θ dv \langle x \rangle \ = \ \displaystyle\int_{a}^{b} \ x P(x) \ \text{dx} \ = \ \displaystyle\int_{0}^{v} \ \displaystyle\int_{0}^{\pi/2} \ \frac{2}{\pi \ v_{max}} \ \frac{2v^2\sin \theta \cos \theta}{g} \ \text{d}\theta \ \text{dv} \ = \ \frac{2}{\pi \ v_{max}} \ \displaystyle\int_{0}^{v} \ \frac{2v^2}{g} \ \displaystyle\int_{0}^{\pi/2} \ \sin \theta \cos \theta \ \text{d}\theta \ \text{dv}

Now, using some simple u u -substitution :

u = sin θ du = cos θ dx u \ = \ \sin \theta \ \ \ \ \ \ \text{du} \ = \ \cos \theta \ \text{dx} 0 π / 2 u du = u 2 2 0 π / 2 = sin 2 θ 2 0 π / 2 = 1 2 \Rightarrow \ \displaystyle\int_{0}^{\pi/2} \ u \ \text{du} \ = \ \frac{u^2}{2} \ \biggr\rvert_{0}^{\pi/2} \ = \ \frac{\sin^2 \theta}{2} \ \biggr\rvert_{0}^{\pi/2} \ = \ \frac{1}{2}

We can substitute this back into our original equation:

2 π v m a x 0 v 2 v 2 g 1 2 dv \Rightarrow \ \frac{2}{\pi \ v_{max}} \ \displaystyle\int_{0}^{v} \ \frac{2v^2}{g} \ \frac{1}{2} \ \text{dv}

Taking the remaining integral:

2 π v m a x 0 v 2 v 2 g 1 2 dv = 2 π g v m a x 0 v m a x v 2 dv = 2 π g v m a x v m a x 3 3 = 2 v m a x 2 3 π g \frac{2}{\pi \ v_{max}} \ \displaystyle\int_{0}^{v} \ \frac{2v^2}{g} \ \frac{1}{2} \ \text{dv} \ = \ \frac{2}{\pi g v_{max}} \ \displaystyle\int_{0}^{v_{max}} \ v^2 \ \text{dv} \ = \ \frac{2}{\pi g v_{max}} \ \frac{v_{max}^3}{3} \ = \ \frac{2v_{max}^2}{3 \pi g}

Looking the original question, the answer to the problem is given in the form a + b = 2 + 3 = 5 a \ + \ b \ = \ 2 \ + \ 3 \ = \ 5 .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...