Average limit

Calculus Level 5

Let A 0 = a , A 1 = b A_0 = a, A_1 = b for some constants a , b a,b , and also A n = A n 1 + A n 2 2 A_n = \dfrac{A_{n-1} + A_{n-2}} 2 .

If the value of lim n A n \displaystyle \lim_{n\to\infty} A_n can be expressed as X a b + Y a + Z b + W Xab + Ya + Zb + W , where X , Y , Z , W X,Y,Z,W are all constants, submit your answer as Y Z + X W YZ + X - W .


The answer is 0.2222222222.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Chew-Seong Cheong
Mar 28, 2017

Relevant wiki: Linear Recurrence Relations - With Repeated Roots

Since A n = A n 1 + A n 2 2 A_n = \dfrac {A_{n-1}+A_{n-2}}2 , 2 A n = A n 1 + A n 2 \implies 2 A_n = A_{n-1}+A_{n-2} . Therefore, the characteristic equation is as follows:

2 r 2 r 1 = 0 ( r 1 ) ( 2 r + 1 ) = 0 r = { 1 1 2 A n = c 1 + c 2 ( 1 2 ) n where c 1 , c 2 are constants. \begin{aligned} 2r^2 -r-1 & = 0 \\ (r-1)(2r+1) & = 0 \\ \implies r & = \begin{cases} 1 \\ -\frac 12 \end{cases} \\ \implies A_n & = {\color{#3D99F6} c_1} + {\color{#3D99F6} c_2} \left(-\frac 12\right)^n & \small \color{#3D99F6} \text{where }c_1, \ c_2 \text{ are constants.} \end{aligned}

{ A 0 = a c 1 + c 2 = a . . . ( 1 ) A 1 = b c 1 c 2 2 = b . . . ( 2 ) \begin{cases} A_0 = a & \implies c_1 + c_2 = a & ...(1) \\ A_1 = b & \implies c_1 - \dfrac {c_2}2 = b & ...(2) \end{cases}

( 1 ) ( 2 ) : 3 2 c 2 = ( a b ) c 2 = 2 3 ( a b ) (1)-(2): \quad \dfrac 32 c_2 = (a-b) \implies c_2 = \dfrac 23 (a-b)

( 1 ) : c 1 = a c 2 = a 2 3 ( a b ) = 1 3 ( a + 2 b ) (1): \quad c_1 = a - c_2 = a - \dfrac 23 (a-b) = \dfrac 13 (a+2b)

A n = 1 3 a + 2 3 b + 2 3 ( 1 2 ) n ( a b ) lim n A n = lim n 1 3 a + 2 3 b + 2 3 ( 1 2 ) n ( a b ) = 1 3 a + 2 3 b \begin{aligned} \implies A_n & = \frac 13 a + \frac 23 b + \frac 23 \left(-\frac 12\right)^n (a-b) \\ \lim_{n \to \infty} A_n & = \lim_{n \to \infty} \frac 13 a + \frac 23 b + \frac 23 \left(-\frac 12\right)^n (a-b) \\ & = \frac 13 a + \frac 23 b \end{aligned}

X = 0 \implies X = 0 , Y = 1 3 Y=\dfrac 13 , Z = 2 3 Z=\dfrac 23 , W = 0 W=0 and Y Z + X W = 1 3 2 3 + 0 0 = 2 9 0.222 YZ+X-W = \dfrac 13 \cdot \dfrac 23 +0-0 = \dfrac 29 \approx \boxed{0.222}

Anirudh Sreekumar
Mar 28, 2017

If we plot a a and b b along a number line as shown in the figure above

A 1 = a + x "x" is the distance between a and b,i.e, x = b a A 2 = a + ( x x 2 ) A 3 = a + ( x x 2 + x 4 ) A n = a + x ( k = 0 n 1 ( 1 2 ) k ) lim n A n = a + x ( k = 0 ( 1 2 ) k ) = a + x ( 1 1 + 1 2 ) = a + x ( 2 3 ) = a + 2 3 ( b a ) = a 3 + 2 b 3 Thus, W = 0 , X = 0 , Y = 1 3 , Z = 2 3 Y Z + X W = 2 9 \begin{aligned}A_{1}&=a+x&\small\color{#3D99F6}\text{"x" is the distance between a and b,i.e, }x=b-a\\ A_{2}&=a+(x-\dfrac{x}{2})\\ A_{3}&=a+(x-\dfrac{x}{2}+\dfrac{x}{4})\\ A_{n}&=a+x\left(\sum_{k=0}^{n-1}(\dfrac{-1}{2})^k\right)\\ \lim_{n\to\infty}A_{n}&=a+x\left(\sum_{k=0}^{\infty}(\dfrac{-1}{2})^k\right)\\ &=a+x\left(\dfrac{1}{1+\dfrac{1}{2}}\right)\\ &=a+x\left(\dfrac{2}{3}\right)=a+\dfrac{2}{3}(b-a)\\ &=\dfrac{a}{3}+\dfrac{2b}{3}\\ \text{Thus,}\\ &\color{#D61F06}\boxed{W=0},\boxed{X=0},\boxed{Y=\dfrac{1}{3}},\boxed{Z=\dfrac{2}{3}}\\&\color{#D61F06}YZ+X-W=\boxed{\dfrac{2}{9}}\end{aligned}

Guilherme Niedu
Mar 28, 2017

Calculating A 1 A_{-1} and A 2 A_{-2} , to use the Z-transform :

2 A 1 = A 0 + A 1 \large \displaystyle 2A_1 = A_0 + A_{-1}

2 b = a + A 1 \large \displaystyle 2b = a + A_{-1}

A 1 = 2 b a \color{#20A900} \boxed{\large \displaystyle A_{-1} = 2b-a}

2 A 0 = A 1 + A 2 \large \displaystyle 2A_0 = A_{-1} + A_{-2}

2 a = 2 b a + A 2 \large \displaystyle 2a = 2b-a + A_{-2}

A 2 = 3 a 2 b \color{#20A900} \boxed{\large \displaystyle A_{-2} = 3a-2b}

So, applying the Z-transform in the equation:

2 A ( z ) = z 1 A ( z ) + A 1 + z 2 A ( z ) + z 1 A 1 + A 2 \large \displaystyle 2A(z) = z^{-1} A(z) + A_{-1} + z^{-2} A(z) + z^{-1} A_{-1} + A_{-2}

A ( z ) = 2 a + ( 2 b a ) z 1 2 z 1 z 2 \large \displaystyle A(z) = \frac{2a + (2b-a)z^{-1}}{2 - z^{-1} - z^{-2}}

A ( z ) = a + ( b 0.5 a ) z 1 1 0.5 z 1 0.5 z 2 \large \displaystyle A(z) = \frac{a + (b-0.5a)z^{-1}}{1 - 0.5z^{-1} - 0.5z^{-2}}

By partial fractions:

A ( z ) = 1 3 [ 2 a 2 b 1 + 0.5 z 1 + a + 2 b 1 z 1 ] \large \displaystyle A(z) = \frac13 \left [ \frac{2a-2b}{1 + 0.5z^{-1}} + \frac{a+2b}{1 - z^{-1}} \right ]

Applying inverse Z-transform:

A n = 1 3 [ ( 2 a 2 b ) ( 0.5 ) n + ( a + 2 b ) ] \color{#20A900} \boxed{ \large \displaystyle A_n = \frac13 \left [ (2a-2b)\cdot (-0.5)^n + (a+2b) \right ] }

When n n \rightarrow \infty :

lim n A n = 1 3 ( a + 2 b ) \color{#20A900} \boxed{ \large \displaystyle \lim_{n \rightarrow \infty} A_n = \frac13 (a+2b) }

So:

X = 0 , Y = 1 3 , Z = 2 3 , W = 0 \color{#3D99F6} \boxed{\large \displaystyle X = 0}, \boxed{\large \displaystyle Y = \frac13}, \boxed{\large \displaystyle Z = \frac23}, \boxed{\large \displaystyle W = 0} , making the answer 2 9 \color{#3D99F6} \boxed{\large \displaystyle \frac29 }

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...