Average Value of a Function

Calculus Level pending

Find the value(s) of b such that the average value of f(x) = 2 + 6x−3x² on the interval [0, b ] is equal to 3.

4 ± 6 2 \frac{4±√6}{2} 3 ± 5 2 \frac{3±√5}{2} 4±√5 4±√6

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Zach Abueg
Mar 27, 2017

Average value = 1 b a a b f ( x ) d x \displaystyle \large \frac{1}{b - a} \int_{a}^{b} f(x) dx

3 = 1 b 0 0 b ( 3 x 2 + 6 x + 2 ) d x \displaystyle \large 3 = \frac{1}{b - 0} \int_{0}^{b} (-3x^2 + 6x + 2) \ dx

3 b = 0 b ( 3 x 2 + 6 x + 2 ) d x \displaystyle \large 3b = \int_{0}^{b} (-3x^2 + 6x + 2) \ dx

3 b = x 3 + 3 x 2 + 2 x 0 b \displaystyle \large 3b = -x^3 + 3x^2 + 2x | ^b_0

3 b = b 3 + 3 b 2 + 2 b \displaystyle \large 3b = -b^3 + 3b^2 + 2b

b 3 3 b 2 + b = 0 \displaystyle \large b^3 - 3b^2 + b = 0

b ( b 2 3 b + 1 ) = 0 \displaystyle \large b(b^2 - 3b + 1) = 0

b 0 \displaystyle \large b \neq 0 because 1 0 0 0 0 f ( x ) d x \displaystyle \large \frac{1}{0 - 0} \int_{0}^{0} f(x) dx is undefined

b 2 3 b + 1 = 0 \displaystyle \large b^2 - 3b + 1 = 0

Use the quadratic formula:

b = b ± b 2 4 a c 2 a = 3 ± 3 2 4 ( 1 ) ( 1 ) 2 ( 1 ) = 3 ± 5 2 \displaystyle \large b = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{3 \pm \sqrt{3^2 - 4(1)(1)}}{2(1)} = \frac{3 \pm \sqrt{5}}{2}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...