Avoid going to the L'Hopital

Calculus Level 2

If lim v π 3 1 2 cos v sin ( v π 3 ) = α \displaystyle \lim_{v \rightarrow \frac{\pi}{3} } \dfrac{1-2 \cos v}{\sin \left( v- \frac{\pi}{3} \right) } = \sqrt{\alpha} , find α \alpha .


Credit: Piskunov's Differential and Integral Calculus.


The answer is 3.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Let x = v π 3 x = v - \frac{\pi}{3} . Then x 0 x \to 0 as v π 3 v \to \frac{\pi}{3} , and the limit becomes

lim x 0 1 2 cos ( x + π 3 ) sin ( x ) = lim x 0 1 2 ( cos ( x ) cos ( π 3 ) sin ( x ) sin ( π 3 ) ) sin ( x ) = \displaystyle\lim_{x \to 0} \dfrac{1 - 2\cos(x + \frac{\pi}{3})}{\sin(x)} = \lim_{x \to 0} \frac{1 - 2(\cos(x)\cos(\frac{\pi}{3}) - \sin(x)\sin(\frac{\pi}{3}))}{\sin(x)} =

lim x 0 1 cos ( x ) + 3 sin ( x ) sin ( x ) = lim x 0 1 cos ( x ) sin ( x ) + 3 = 3 \displaystyle\lim_{x \to 0} \dfrac{1 - \cos(x) + \sqrt{3}\sin(x)}{\sin(x)} = \lim_{x \to 0} \dfrac{1 - \cos(x)}{\sin(x)} + \sqrt{3} = \sqrt{3} ,

since lim x 0 1 cos ( x ) sin ( x ) = lim x 0 ( 1 cos ( x ) sin ( x ) 1 + cos ( x ) 1 + cos ( x ) ) = lim x 0 sin ( x ) 1 + cos ( x ) = 0 \displaystyle\lim_{x \to 0} \dfrac{1 - \cos(x)}{\sin(x)} = \lim_{x \to 0} \left(\dfrac{1 - \cos(x)}{\sin(x)} * \dfrac{1 + \cos(x)}{1 + \cos(x)}\right) = \lim_{x \to 0} \dfrac{\sin(x)}{1 + \cos(x)} = 0 .

Thus α = 3 \alpha = \boxed{3} .

Same method!

Anik Mandal - 5 years, 3 months ago

Sorry but I used L'Hopital's rule .

The given limit takes the form 0 0 \frac{0}{0} for v = π 3 v=\frac{\pi}{3} . The derivative of the limit is 2 sin v cos ( v π 3 ) \dfrac{2\sin{v}}{\cos{(v-\frac{\pi}{3})}} . By L'Hopital's rule the limit is now achieved by substituting v = π 3 v=\frac{\pi}{3} and we get it as 3 \boxed {\sqrt{3}} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...