Awesome Binomial Theorem!

Algebra Level 4

If a , b , c a,b,c respectively are the sides of triangle A B C ABC , then let S = r = 0 n ( n r ) b ( n r ) c r sin r B ( n r ) C . S= \sum_{r=0}^n {n \choose r} b^{(n-r)} c^{r} \sin \ {rB-(n-r)C} . and
N = r = 0 5 ( 5 r ) 2 N = \sum_{r=0}^{5} {5 \choose r}^{2} .

Then find the value of N S N-S


The answer is 252.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Nikhil Bn
Feb 14, 2017

Let S = r = 0 n ( n r ) b ( n r ) c r sin r B ( n r ) C S= \sum_{r=0}^n {n \choose r} b^{(n-r)} c^{r} \sin \ {rB-(n-r)C} and T = r = 0 n ( n r ) b ( n r ) c r cos r B ( n r ) C T= \sum_{r=0}^n {n \choose r} b^{(n-r)} c^{r} \cos \ {rB-(n-r)C} Then, T + i S = r = 0 n ( n r ) b ( n r ) c r e i [ r B ( n r ) C ] T+iS= \sum_{r=0}^n {n \choose r} b^{(n-r)} c^{r} e^{i [rB-(n-r)C]} = r = 0 n ( n r ) ( b e i C ) ( n r ) ( c e i B ) r = \sum_{r=0}^n {n \choose r} (b e^{-iC})^{(n-r)} (c e^{iB})^{r} = ( b e i C + c e i B ) n = (b e^{-iC} + c e^{iB})^{n} = [ ( b cos C + c cos B ) + i ( b sin C + c sin B ) ] n = [(b \cos \ C + c \cos \ B) + i(-b \sin \ C + c \sin \ B)]^{n} But in any triangle, b cos C + c cos B = a b \cos \ C + c \cos \ B = a and b sin B = c sin C \frac {b}{\sin \ B} = \frac {c}{\sin \ C} Thus T + i S = a n T+iS = a^{n}

And hence T = a n T = a^{n} and S = 0 S = 0 and N = ( 10 5 ) = 252 N = {10 \choose 5} = 252
Therefore, N S = 252 N-S = 252

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...