Axis of Symmetry of a Parabola

Calculus Level 5

A parabola is tangent to the line y = 3 x + 1 y = 3 x + 1 at ( 1 , 4 ) (1, 4) and to the line y = x 2 y = - x - 2 at ( 5 , 7 ) . (5, -7).

Let A A be the angle (in degrees) that the parabola's axis of symmetry makes with the positive x x -axis.

Assuming that 9 0 < A 9 0 , -90^{\circ} \lt A^\circ \le 90^{\circ}, find A A to three decimal places.


The answer is -3.814.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Maria Kozlowska
Feb 13, 2018

A line connecting midpoint of tangency points M ( 3 , 1.5 ) M(3,-1.5) and the intersection point of tangency lines I ( 0.75 , 1.25 ) I(-0.75, -1.25) is parallel to the axis of symmetry. The slope of this line is 1 15 \dfrac{-1}{15} . The angle A = a r c t a n ( 1 / 15 ) 3.814 A=arctan(-1/15)\approx -3.814 .

You're absolutely right, this is the fastest way to calculate the angle. Thank you for posting this ingenious solution.

Hosam Hajjir - 3 years, 3 months ago

Nicely done!

Jon Haussmann - 3 years, 3 months ago
Nicola Mignoni
Feb 13, 2018

We can get easily the parabola equation via the Bèzier curve equation

c ( t ) = k = 0 n ( 2 k ) t k ( 1 t ) 2 k p k \displaystyle c(t)=\sum_{k=0}^n {2\choose k}t^k(1-t)^{2-k} \vec{p}_k , t R t\in\mathbb{R}

where p 0 = ( 5 , 7 ) \vec{p}_0 = (5,-7) , p 1 = ( 3 4 , 5 4 ) \vec{p}_1 = (\displaystyle-\frac{3}{4},-\frac{5}{4}) and p 2 = ( 1 , 4 ) \vec{p}_2 = (1,4) and n = 2 n=2 . Point p 1 \vec{p}_1 is the result of intersection between the two lines. By solving the equation we get c ( t ) c(t)

c ( t ) = ( 15 2 t 2 23 2 t + 5 , 1 2 t 2 + 23 2 t 7 ) \displaystyle c(t) = (\frac{15}{2}t^2-\frac{23}{2}t+5,-\frac{1}{2}t^2+\frac{23}{2}t-7) .

Now, c ( t ) c(t) can be written as

c ( t ) = [ 5 7 ] + [ 23 2 15 2 23 2 1 2 ] [ t t 2 ] \displaystyle c(t)=\begin{bmatrix} 5 \\ -7 \\ \end{bmatrix} + \begin{bmatrix} -\frac{23}{2} & \frac{15}{2} \\ \frac{23}{2} & -\frac{1}{2}\\ \end{bmatrix} \begin{bmatrix} t \\ t^2 \\ \end{bmatrix}

namely as transformation of the ( t , t 2 ) (t,t^2) parabola in the x y xy plane. Due to the fact that the axis of ( t , t 2 ) (t,t^2) is ( 0 , t ) (0,t) , the axis a ( t ) a(t) of c ( t ) c(t) is given by the application

a ( t ) = [ 5 7 ] + [ 23 2 15 2 23 2 1 2 ] [ 0 t ] = ( 15 2 t + 5 , 1 2 t 7 ) \displaystyle a(t)=\begin{bmatrix} 5 \\ -7 \\ \end{bmatrix} + \begin{bmatrix} -\frac{23}{2} & \frac{15}{2} \\ \frac{23}{2} & -\frac{1}{2}\\ \end{bmatrix} \begin{bmatrix} 0 \\ t \\ \end{bmatrix} = (\frac{15}{2}t+5,-\frac{1}{2}t-7)

or, explicitly

y = x 15 100 15 \displaystyle y=-\frac{x}{15}-\frac{100}{15}

Eventually

arctan ( 1 15 ) = 3.814 ° \displaystyle\left|\arctan\left(-\frac{1}{15}\right)\right|=3.814°

David Vreken
Feb 15, 2018

A conic has a general equation of A x 2 + B x y + C y 2 + D x + E y + F = 0 Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0 , and a parabola has the property B 2 4 A C = 0 B^2 - 4AC = 0 . Since ( 1 , 4 ) (1, 4) and ( 5 , 7 ) (5, -7) are solutions to the conic, we have A + 4 B + 16 C + D + 4 E + F = 0 A + 4B + 16C + D + 4E + F = 0 and 25 A 35 B + 49 C + 5 D 7 E + F = 0 25A - 35B + 49C + 5D - 7E + F = 0 .

The derivative of the conic is 2 A x + B ( x d y d x + y ) + 2 C y d y d x + D + E d y d x = 0 2Ax + B(x\frac{dy}{dx} + y) + 2Cy\frac{dy}{dx} + D + E\frac{dy}{dx} = 0 , and since d y d x = 3 \frac{dy}{dx} = 3 at ( 1 , 4 ) (1, 4) and since d y d x = 1 \frac{dy}{dx} = -1 at ( 5 , 7 ) (5, -7) we have 2 A + 7 B + 24 C + D + 3 E = 0 2A + 7B + 24C + D + 3E = 0 and 10 A 12 B + 14 C + D E = 0 10A - 12B + 14C + D - E = 0 .

Solving these 5 5 equations gives ( A , B , C , D , E , F ) = ( A , 8 11 A , 16 121 A , 54 11 A , 216 121 A , 729 121 A ) (A, B, C, D, E, F) = (A, \frac{8}{11}A, \frac{16}{121}A, -\frac{54}{11}A, -\frac{216}{121}A, \frac{729}{121}A) and ( A , B , C , D , E , F ) = ( A , 30 A , 225 A , 3503 A , 703 A , 2594 A ) (A, B, C, D, E, F) = (A, 30A, 225A, -3503A, -703A, 2594A) .

The first solution degenerates to a line in the form of y = 11 4 x + 27 4 y = -\frac{11}{4}x + \frac{27}{4} , but the second solution gives us a parabola in the form of x 2 + 30 x y + 225 y 2 3503 x 703 y + 2594 = 0 x^2 + 30xy + 225y^2 - 3503x - 703y + 2594 = 0 , and its angle of rotation is θ = 1 2 arctan ( B A C ) = 1 2 arctan ( 30 1 225 ) 3.814 \theta = \frac{1}{2}\arctan(\frac{B}{A - C}) =\frac{1}{2}\arctan(\frac{30}{1 - 225}) \approx \boxed{-3.814} .

Great effort. This is how I've done it too. Thanks for posting it.

Hosam Hajjir - 3 years, 3 months ago
Steven Chase
Feb 12, 2018

Parabola parametrization:

P = P 0 + α v 1 + β α 2 v 2 x = x 0 + α v 1 x + β α 2 v 2 x y = y 0 + α v 1 y + β α 2 v 2 y \large{\vec{P} = \vec{P_0} + \alpha \, \vec{v_1} + \beta \, \alpha^2 \, \vec{v_2} \\ x = x_0 + \alpha \, v_{1 x} + \beta \, \alpha^2 \, v_{2 x} \\ y = y_0 + \alpha \, v_{1 y} + \beta \, \alpha^2 \, v_{2 y} }

In the above equation, P 0 P_0 is the vertex, α \alpha is a variable spatial parameter, β \beta is a scaling parameter, and vectors v 1 v_1 and v 2 v_2 are orthogonal unit vectors.

v 1 = ( c o s θ , s i n θ ) v 2 = ( s i n θ , c o s θ ) \large{\vec{v_1} = (cos \theta, sin \theta) \\ \vec{v_2} = (-sin \theta, cos \theta)}

There are two points, and thus two α \alpha values to find. The six unknowns are thus:

x 0 y 0 θ β α 1 α 2 \large{x_0 \\ y_0 \\ \theta \\ \beta \\ \alpha_1 \\ \alpha_2}

There are six equations (four for position and two for slope). First, some definitions:

( x 1 , y 1 ) = ( 1 , 4 ) ( x 2 , y 2 ) = ( 5 , 7 ) s 1 = 3 s 2 = 1 \large{(x_1,y_1) = (1,4) \\ (x_2,y_2) = (5,-7) \\ s_1 = 3 \\ s_2 = -1}

Some elaboration on the slope equation derivations:

d y d x = d y / d α d x / d α = v 1 y + 2 β α v 2 y v 1 x + 2 β α v 2 x \large{\frac{dy}{dx} = \frac{dy/d \alpha}{dx / d \alpha} = \frac{v_{1 y} + 2 \beta \, \alpha \, v_{2 y}}{v_{1 x} + 2 \beta \, \alpha \, v_{2 x}}}

Form a system of six non-linear equations to solve for the six unknowns:

x 0 + α 1 c o s θ β α 1 2 s i n θ x 1 = 0 y 0 + α 1 s i n θ + β α 1 2 c o s θ y 1 = 0 x 0 + α 2 c o s θ β α 2 2 s i n θ x 2 = 0 y 0 + α 2 s i n θ + β α 2 2 c o s θ y 2 = 0 s 1 ( c o s θ 2 β α 1 s i n θ ) ( s i n θ + 2 β α 1 c o s θ ) = 0 s 2 ( c o s θ 2 β α 2 s i n θ ) ( s i n θ + 2 β α 2 c o s θ ) = 0 \large{x_0 + \alpha_1 \, cos \theta - \beta \, \alpha_1^2 \, sin\theta - x_1 = 0 \\ y_0 + \alpha_1 \, sin \theta + \beta \, \alpha_1^2 \, cos\theta - y_1 = 0 \\ x_0 + \alpha_2 \, cos \theta - \beta \, \alpha_2^2 \, sin\theta - x_2 = 0 \\ y_0 + \alpha_2 \, sin \theta + \beta \, \alpha_2^2 \, cos\theta - y_2 = 0 \\ s_1 (cos \theta - 2 \beta \, \alpha_1 \, sin \theta) - (sin \theta + 2 \beta \, \alpha_1 \, cos \theta) = 0 \\ s_2 (cos \theta - 2 \beta \, \alpha_2 \, sin \theta) - (sin \theta + 2 \beta \, \alpha_2 \, cos \theta) = 0 }

Solving with multivariate Newton Raphson yields (note that the axis angle leads θ \theta by 90 degrees):

x0
0.60858328765

y0
2.031404182

theta (degrees)
-93.8140748343

beta
0.0655361479401

alpha1
-1.99027234142

alpha2
8.7192883529

Axis angle (degrees)
-3.81407483429

Thanks for an elegant solution.

Hosam Hajjir - 3 years, 3 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...