B-Field from Equilateral

A 10 10 volt DC source supplies a wire equilateral triangle as shown. Each side of the triangle has a resistance of 1 Ω 1 \Omega . The vertices are at the following points:

P 1 = ( x 1 , y 1 , z 1 ) = ( 1 , 0 , 0 ) P 2 = ( x 2 , y 2 , z 2 ) = ( 1 2 , 3 2 , 0 ) P 3 = ( x 3 , y 3 , z 3 ) = ( 1 2 , 3 2 , 0 ) \vec{P}_1 = (x_1, y_1, z_1) = (1,0,0) \\ \vec{P}_2 = (x_2, y_2, z_2) = \Big(-\frac{1}{2},-\frac{\sqrt{3}}{2},0 \Big) \\ \vec{P}_3 = (x_3, y_3, z_3) = \Big(-\frac{1}{2},\frac{\sqrt{3}}{2},0 \Big)

What is the magnitude of the magnetic flux density B \vec{B} at point ( x 0 , y 0 , z 0 ) = ( 1 , 1 , 1 ) (x_0, y_0, z_0) = (1,1,1) ?

Details and Assumptions:
1) The magnetic permeability μ 0 = 1 H/m \mu_0 = 1 \text{H/m}
2) Neglect the field contributions from the green wires


The answer is 0.488.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Karan Chatrath
Apr 11, 2021

Great problem as always. I start with a general situation. Consider a current carrying wire segment with start and end points R A = ( x A , y A , z A ) \vec{R}_A=(x_A,y_A,z_A) and R B = ( x B , y B , z B ) \vec{R}_B=(x_B,y_B,z_B) respectively. Current flows from point A to B and has a magnitude of I A B I_{AB} .

Any general point lying on the wire can be parameterised as follows:

R P = R A + t ( R B R A ) \vec{R}_P= R_A + t(\vec{R}_B - \vec{R}_A) 0 t 1 0 \le t \le 1

We define:

L = R P R A \vec{L} = \vec{R}_P -\vec{R}_A d L = d t ( R B R A ) \implies d\vec{L} = dt \ (\vec{R}_B - \vec{R}_A)

The vector d L d\vec{L} is a current carrying element on the wire. The magnetic field at a general point R T \vec{R}_T die to the current carrying element is:

d B A B = μ o 4 π ( I A B d L × ( R T R P ) R T R P 3 ) d\vec{B}_{AB} = \frac{\mu_o}{4 \pi} \left(\frac{I_{AB} \ d\vec{L} \times (\vec{R}_T - \vec{R}_P)}{\lvert \vec{R}_T - \vec{R}_P \rvert^3}\right)


Applying this general recipe to compute the magnetic field at ( 1 , 1 , 1 ) (1,1,1) leads to:

d B 31 = μ o 4 π ( I 31 d L × ( R T R P ) R T R P 3 ) d\vec{B}_{31} = \frac{\mu_o}{4 \pi} \left(\frac{I_{31} \ d\vec{L} \times (\vec{R}_T - \vec{R}_P)}{\lvert \vec{R}_T - \vec{R}_P \rvert^3}\right) R P = P 3 + t ( P 1 P 3 ) \vec{R}_P= \vec{P}_3 + t(\vec{P}_1 - \vec{P}_3) d L = d t ( P 1 P 3 ) d\vec{L} = dt \ (\vec{P}_1 - \vec{P}_3) d B 31 = ( f x , 31 ( t ) i ^ + f y , 31 ( t ) j ^ + f z , 31 ( t ) k ^ ) d t d\vec{B}_{31} = \left(f_{x,31}(t) \ \hat{i} + f_{y,31}(t) \ \hat{j} + f_{z,31}(t) \ \hat{k} \right) \ dt B 31 = ( 0 1 f x , 31 ( t ) d t ) i ^ + ( 0 1 f y , 31 ( t ) d t ) j ^ + ( 0 1 f z , 31 ( t ) d t ) k ^ \vec{B}_{31} = \left(\int_{0}^{1} f_{x,31}(t) \ dt \right) \ \hat{i} + \left(\int_{0}^{1} f_{y,31}(t) \ dt \right) \ \hat{j} + \left(\int_{0}^{1} f_{z,31}(t) \ dt \right) \ \hat{k}


d B 12 = μ o 4 π ( I 12 d L × ( R T R P ) R T R P 3 ) d\vec{B}_{12} = \frac{\mu_o}{4 \pi} \left(\frac{I_{12} \ d\vec{L} \times (\vec{R}_T - \vec{R}_P)}{\lvert \vec{R}_T - \vec{R}_P \rvert^3}\right) R P = P 1 + t ( P 2 P 1 ) \vec{R}_P= \vec{P}_1 + t(\vec{P}_2 - \vec{P}_1) d L = d t ( P 2 P 1 ) d\vec{L} = dt \ (\vec{P}_2 - \vec{P}_1) d B 12 = ( f x , 12 ( t ) i ^ + f y , 12 ( t ) j ^ + f z , 12 ( t ) k ^ ) d t d\vec{B}_{12} = \left(f_{x,12}(t) \ \hat{i} + f_{y,12}(t) \ \hat{j} + f_{z,12}(t) \ \hat{k} \right) \ dt B 12 = ( 0 1 f x , 12 ( t ) d t ) i ^ + ( 0 1 f y , 12 ( t ) ) d t j ^ + ( 0 1 f z , 12 ( t ) d t ) k ^ \vec{B}_{12} = \left(\int_{0}^{1} f_{x,12}(t) \ dt \right) \ \hat{i} + \left(\int_{0}^{1} f_{y,12}(t) \right) \ dt \ \hat{j} + \left(\int_{0}^{1} f_{z,12}(t) \ dt \right) \ \hat{k}


d B 32 = μ o 4 π ( I 32 d L × ( R T R P ) R T R P 3 ) d\vec{B}_{32} = \frac{\mu_o}{4 \pi} \left(\frac{I_{32} \ d\vec{L} \times (\vec{R}_T - \vec{R}_P)}{\lvert \vec{R}_T - \vec{R}_P \rvert^3}\right) R P = P 3 + t ( P 2 P 3 ) \vec{R}_P= \vec{P}_3 + t(\vec{P}_2 - \vec{P}_3) d L = d t ( P 2 P 3 ) d\vec{L} = dt \ (\vec{P}_2 - \vec{P}_3) d B 32 = ( f x , 32 ( t ) i ^ + f y , 32 ( t ) j ^ + f z , 32 ( t ) k ^ ) d t d\vec{B}_{32} = \left(f_{x,32}(t) \ \hat{i} + f_{y,32}(t) \ \hat{j} + f_{z,32}(t) \ \hat{k} \right) \ dt B 32 = ( 0 1 f x , 32 ( t ) d t ) i ^ + ( 0 1 f y , 32 ( t ) d t ) j ^ + ( 0 1 f z , 32 ( t ) d t ) k ^ \vec{B}_{32} = \left(\int_{0}^{1} f_{x,32}(t) \ dt \right) \ \hat{i} + \left(\int_{0}^{1} f_{y,32}(t) \ dt \right) \ \hat{j} + \left(\int_{0}^{1} f_{z,32}(t) \ dt \right) \ \hat{k}


Finally, the net magnetic field magnitude is:

B T = B 31 + B 12 + B 32 0.488 \vec{B}_T = \lvert \vec{B}_{31} + \vec{B}_{12} + \vec{B}_{32} \rvert \approx 0.488 d t = 1 0 6 dt = 10^{-6}

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
clear all
clc

% Branch currents (From Ohm's law):
I31    = 10/2;
I12    = 10/2;
I32    = 10;

% Points on equilateral triangle:
P1     = [1;0;0];
P2     = [-1/2;-sqrt(3)/2;0];
P3     = [-1/2;sqrt(3)/2;0];

% Point at which B field is to be computed:
RT     = [1;1;1];

dt     = 1e-6;

% Calcluating field due to segment 3-1:
B31    = 0;

for t = 0:dt:1

    RP         = P3 + t*(P1 - P3);
    dL         = dt*(P1 - P3);

    % Biot Savart:
    dB31       = (1/(4*pi))*cross(I31*dL,RT-RP)/norm(RT - RP)^3;

    % Numerical integration:
    B31        = B31 + dB31;
end

% Calcluating field due to segment 1-2:
B12    = 0;

for t = 0:dt:1

    RP         = P1 + t*(P2 - P1);
    dL         = dt*(P2 - P1);

    % Biot Savart:
    dB12       = (1/(4*pi))*cross(I12*dL,RT-RP)/norm(RT - RP)^3;

    % Numerical integration:
    B12        = B12 + dB12;
end

% Calcluating field due to segment 3-2:
B32    = 0;

for t = 0:dt:1

    RP         = R3 + t*(P2 - P3);
    dL         = dt*(P2 - P3);

    % Biot Savart:
    dB32       = (1/(4*pi))*cross(I32*dL,RT-RP)/norm(RT - RP)^3;

    % Numerical integration:
    B32        = B32 + dB32;
end

% Resultant magnitude:
B     = norm(B31 + B12 + B32)
% B   = 0.488

Great problem as always! Thanks for posting

Karan Chatrath - 2 months ago

Log in to reply

Glad you liked it, and thanks for the solution

Steven Chase - 2 months ago

@Karan Chatrath if you don't mind ,there is nothing great in the problem,you only need to add the magnetic field using vectors by that 3 wires.nothing else.

Talulah Riley - 1 month, 4 weeks ago

@Steven Chase how are you ?? After many days

Talulah Riley - 1 month, 4 weeks ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...