Back from a short holiday!

Calculus Level 5

n = 1 n H n 2 n 1 = A + ln B \large \sum _{ n=1 }^{ \infty }{ \dfrac { n{ H }_{ n } }{ { 2 }^{ n-1 } } } =A+\ln B

The above equation holds true for positive integers A A and B B . Find A + B A+B .

Notation : H n H_n denotes the n th n^\text{th} harmonic number , H n = 1 + 1 2 + 1 3 + + 1 n H_n = 1 + \dfrac12 + \dfrac13 + \cdots + \dfrac1n .


Inspired by my own problem .


The answer is 20.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Let J ( x ) = n = 1 H n x n = ln ( 1 x ) 1 x \displaystyle J(x) = \sum_{n=1}^{\infty} H_n x^n = -\frac{\ln(1-x)}{1-x} for x < 1 |x|<1

We have J ( 1 2 ) = n = 1 n H n 2 n 1 = 1 ( 1 1 2 ) 2 ln ( 1 1 2 ) ( 1 1 2 ) 2 \displaystyle J'(\frac{1}{2}) = \sum_{n=1}^{\infty} \frac{nH_n}{2^{n-1}} = \frac{1}{(1-\frac{1}{2})^2} - \frac{\ln(1-\frac{1}{2})}{(1-\frac{1}{2})^2}

Thus , n = 1 n H n 2 n 1 = 4 + ln 16 \displaystyle \sum_{n=1}^{\infty} \frac{nH_n}{2^{n-1}} = \color{#D61F06}{4}+\ln\color{#3D99F6}{16} making the answer 4 + 16 = 20 \boxed{4+16=20}

Note : There's a typo , It should be A + ln B A+\ln B

Sorry I mistakenly added a minus sign.

Aditya Kumar - 5 years ago

S = n = 1 n H n 2 n 1 = 1 + n = 2 n H n 2 n 1 = 1 + n = 2 n ( H n 1 + 1 n ) 2 n 1 = 1 + n = 2 n H n 1 + 1 2 n 1 = 1 + n = 1 ( n + 1 ) H n + 1 2 n = 1 + 1 2 n = 1 n H n 2 n 1 + n = 1 H n 2 n + n = 1 1 2 n 1 2 S = n = 1 H n 2 n + n = 0 1 2 n = ln ( 1 1 2 ) 1 1 2 + 1 1 1 2 = 2 ln 2 + 2 S = 4 ln 2 + 4 = 4 + ln 16 \begin{aligned} S & = \sum_{n=1}^\infty \frac{n H_n}{2^{n-1}} \\ & = \color{#3D99F6}{1} + \sum_{n=\color{#3D99F6}{2}}^\infty \frac{n H_n}{2^{n-1}} \\ & = 1 + \sum_{n=2}^\infty \frac{n \left(H_{n-1}+\frac1n\right)}{2^{n-1}} \\ & = 1 + \sum_{n=2}^\infty \frac{n H_{n-1}+1}{2^{n-1}} \\ & = 1 + \sum_{n=\color{#3D99F6}{1}}^\infty \frac{\color{#3D99F6}{(n+1)}H_\color{#3D99F6}{n}+1}{2^\color{#3D99F6}{n}} \\ & = \color{#D61F06}{1} + \frac{1}{\color{#3D99F6}{2}} \sum_{n=1}^\infty \frac{n H_n}{2^\color{#3D99F6}{n-1}} + \sum_{n=1}^\infty \frac{H_n}{2^n} + \color{#D61F06}{\sum_{n=1}^\infty \frac1{2^n}} \\ \implies \frac12 S & = \sum_{n=1}^\infty \frac{H_n}{2^n} + \color{#D61F06}{\sum_{n=0}^\infty \frac1{2^n}} \\ & = \frac{-\ln \left(1-\frac12\right)}{1-\frac12} + \frac1 {1-\frac12} \\ & = 2\ln 2 + 2 \\ \implies S & = 4\ln 2 + 4 \\ & = 4 + \ln 16 \end{aligned}

A + B = 4 + 16 = 20 \implies A+B = 4+16 = \boxed{20} .

@Aditya Kumar change the negative sign to positive. The problem will be okay.

Chew-Seong Cheong - 5 years ago

Log in to reply

Sorry I mistakenly added a minus sign.

Aditya Kumar - 5 years ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...