A theorem to rule them all

Calculus Level 2

True or False?

Let a 0 , a 1 , , a n a_0, a_1 , \ldots , a_n be reals such that a 0 1 + a 1 2 + + a n n + 1 = 0 \dfrac {a_0}1 + \dfrac{a_1}2 + \cdots + \dfrac{a_n}{n+1} = 0 , then there exists a real z [ 0 , 1 ] z\in [0,1] such that a 0 + a 1 z + + a n z n = 0 a_0 + a_1 z + \cdots + a_n z^n = 0 .

True False

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Mohammad Hamdar
Dec 22, 2016

Relevant wiki: Rolle's Theorem

Consider the function f ( x ) = a 0 x + a 1 x 2 2 + a 2 x 3 3 + . . . + a n x n + 1 n + 1 f\left( x \right) ={ a }_{ 0 }x+\frac { { a }_{ 1 }{ x }^{ 2 } }{ 2 } +\frac { { a }_{ 2 }{ x }^{ 3 } }{ 3 } +...+\frac { { a }_{ n }{ x }^{ n+1 } }{ n+1 }
f f is continuous over [ 0 , 1 ] \left[ 0,1 \right]
f f is differentiable for 0 < x < 1 0<x<1\quad

f ( 0 ) = f ( 1 ) = a 0 1 + a 2 2 + . . . + a n n + 1 = 0 f(0)=f(1)=\frac { { a }_{ 0 } }{ 1 } +\frac { { a }_{ 2 } }{ 2 } +...+\frac { { a }_{ n } }{ n+1 } =0 Then by Rolle's theorem , there exists z [ 0 , 1 ] z\in \left[ 0,1 \right] such that f ( z ) = 0 f^{ ' }\left( z \right) =0 i.e. a 0 + a 1 z + + a n z n = 0 { a }_{ 0 }+{ a }_{ 1 }z+\cdots+{ a }_{ n }{ z }^{ n }=0 .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...