Back to Classics

Algebra Level 2

Evaluate the sum: n = 2 2021 1 n ( n 1 ) \sum_{n=2}^{2021} \dfrac {1}{n(n-1)}

2019 2021 \frac{2019}{2021} 2020 2021 \frac{2020}{2021} 1 2021 \frac{1}{2021} \infty 1 1

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

n = 2 2021 1 n ( n 1 ) = n = 1 2020 1 n ( n + 1 ) By partial fraction decomposition = n = 1 2020 ( 1 n 1 n + 1 ) = 1 1 1 2 + 1 2 1 3 + 1 3 1 4 + 1 4 1 2020 + 1 2020 1 2021 = 1 1 2021 = 2020 2021 \begin{aligned} \sum_\blue{n=2}^{2021} \frac 1{n(n-1)} & = \sum_\red{n=1}^{2020} \frac 1{n(n+1)} & \small \blue{\text{By partial fraction decomposition}} \\ & = \sum_{n=1}^{2020} \left(\frac 1n - \frac 1{n+1} \right) \\ & = \frac 11 \ \cancel{- \frac 12 + \frac 12} \ \cancel{- \frac 13 + \frac 13} \ \cancel{- \frac 14 + \frac 14} - \cdots \cancel{- \frac 1{2020} + \frac 1{2020}} - \frac 1{2021} \\ & = 1 - \frac 1{2021} = \boxed {\frac {2020}{2021}} \end{aligned}

Thank you Sir for sharing your solution.

Hana Wehbi - 4 months ago
Hana Wehbi
Feb 5, 2021

n = 2 2021 1 ( n 1 ) ( n ) = 1 1 2021 = 2020 2021 \sum_{n=2}^{2021} \dfrac {1}{ (n-1)(n)} = 1 - \frac { 1 }{2021} = \frac{2020}{2021}

We can write the first few terms to see how terms get cancelled:

1 1 × 2 = 1 1 2 \frac{1}{1\times 2} = 1 - \frac{1}{2}

1 2 × 3 = 1 6 = 1 2 1 3 \frac{1}{2\times 3} = \frac{1}{6} = \frac{1}{2} - \frac{1}{3}

1 3 × 4 = 1 12 = 1 3 1 4 \frac {1}{3\times 4} = \frac {1}{12} = \frac {1}{3} - \frac{1}{4}

e t c . . . etc ...

n = 2 2021 1 ( n 1 ) ( n ) = ( 1 1 2 ) + ( 1 2 1 3 ) + ( 1 3 1 4 ) + + ( 1 2020 1 2021 ) = 1 1 2021 = 2020 2021 \sum_{n=2}^{2021} \dfrac {1}{ (n-1)(n)} =\Big ( 1 - \cancel{\frac{1}{2}}\Big) +\Big ( \cancel{\frac{1}{2}} -\cancel{ \frac{1}{3}}\Big) + \Big( \cancel{\frac {1}{3}} -\cancel{ \frac{1}{4}}\Big)+\dots +\Big(\cancel{\frac{1}{2020}} - \frac{1}{2021} \Big) = 1 - \frac{1}{2021} = \frac{2020}{2021}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...