Back to the Roots

Geometry Level 5

k = 1 ( n + 1 ) / 2 ( 1 + 8 sin 2 ( ( 2 k 1 ) π 2 n ) ) \prod_{k=1}^{(n+1)/2}\left(1+8\sin^2\left(\frac{(2k-1){\pi}}{2{n}}\right)\right) for odd n n can be written as a b n + c ab^n+c , where a , b , c a,b,c are positive integers. Find a + b + c a+b+c .


The answer is 8.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

This is my overkill solution, I hope you all guys have a shorter one. Let w = e 2 π i / n w=e^{2\pi i/n} . Now, with the identity sin 2 θ = 1 cos 2 θ 2 \sin^2 \theta=\frac{1-\cos 2\theta}{2} the product P P is:

P = k = 1 ( n + 1 ) / 2 ( 5 4 cos ( ( 2 k 1 ) π n ) ) P=\displaystyle \prod_{k=1}^{(n+1)/2}\left(5-4\cos\left(\dfrac{(2k-1) \pi}{n}\right)\right)

We can evaluate the last term of the product, which is just 9 9 , and also with the identity cos ( π θ ) = cos θ \cos(\pi-\theta)=-\cos\theta , we can work with the product backwards to make it simpler:

P = 9 k = 1 ( n 1 ) / 2 ( 5 + 4 cos ( 2 π k n ) ) P=9\displaystyle \prod_{k=1}^{(n-1)/2} \left(5+4\cos\left(\dfrac{2\pi k}{n}\right)\right)

Now, with the identity cos ( 2 π θ ) = cos θ \cos(2\pi-\theta)=\cos\theta , we can say that:

P = 9 k = 1 n 1 ( 5 + 4 cos ( 2 π k n ) ) P=9\sqrt{\displaystyle \prod_{k=1}^{n-1} \left(5+4\cos\left(\dfrac{2\pi k}{n}\right)\right)}

The next step is consider the polynomial P ( x ) = x n 1 x 1 P(x)=\dfrac{x^n-1}{x-1} where x 1 x\neq 1 . It clearly contains the roots w , w 2 , , w n 1 w,w^2,\ldots,w^{n-1} , and since n n is odd, we can factorize it like this: P ( x ) = ( w x ) ( w 2 x ) ( w n 1 x ) P(x)=(w-x)(w^2-x)\cdots(w^{n-1}-x) .

Next, we know that w k + w k = 2 cos ( 2 π k n ) w^k+w^{-k}=2\cos\left(\dfrac{2\pi k}{n}\right) , so the product is:

P = 9 k = 1 n 1 ( 5 + 2 w + 2 w 1 ) = 9 k = 1 n 1 2 ( w k + 1 / 2 ) ( w k + 2 ) w k P=9\sqrt{\displaystyle \prod_{k=1}^{n-1} \left(5+2w+2w^{-1}\right)}=9\sqrt{\displaystyle \prod_{k=1}^{n-1} \dfrac{2(w^k+1/2)(w^k+2)}{w^k}}

Note that we can distribute the product, so it becomes to:

P = 9 2 n 1 k = 1 n 1 ( w k + 1 / 2 ) k = 1 n 1 ( w k + 2 ) = 9 2 n 1 P ( 1 / 2 ) P ( 2 ) P=9\sqrt{2^{n-1} \displaystyle \prod_{k=1}^{n-1} (w^k+1/2) \displaystyle \prod_{k=1}^{n-1} (w^k+2)}=9\sqrt{2^{n-1} \cdot P(-1/2)\cdot P(-2)}

Finally:

P = 9 2 n 1 ( 1 / 2 ) n 1 1 / 2 1 ( 2 ) n 1 2 1 P=9\sqrt{2^{n-1}\cdot\dfrac{(-1/2)^n-1}{-1/2-1}\cdot\dfrac{(-2)^n-1}{-2-1}}

Since n n is odd, we can simplify the powers:

P = 9 2 n 1 2 n + 1 3 / 2 2 n + 1 3 = 9 2 n ( 2 + 2 n + 2 n ) 9 P=9\sqrt{2^{n-1}\cdot\dfrac{2^{-n}+1}{3/2}\cdot\dfrac{2^n+1}{3}}=9\sqrt{\dfrac{2^n(2+2^{-n}+2^n)}{9}}

P = 3 2 2 n + 2 n + 1 + 1 = 3 ( 2 n + 1 ) 2 P=3\sqrt{2^{2n}+2^{n+1}+1}=3\sqrt{(2^n+1)^2}

P = 3 ( 2 n + 1 ) = 3 2 n + 3 P=3(2^n+1)=3\cdot 2^n+3

On comparing we get a = 3 , b = 2 , c = 3 a=3,b=2,c=3 , hence a + b + c = 8 a+b+c=\boxed{8} .

Very clear and systematic solution (upvote)! Thank you!

Otto Bretscher - 5 years, 9 months ago
Otto Bretscher
Sep 15, 2015

Like Alan, I use sin 2 t = 1 cos 2 t 2 \sin^2{t}=\frac{1-\cos2t}{2} and I evaluate the last term to find P = 9 k = 1 ( n 1 ) / 2 ( 5 4 cos ( ( 2 k 1 ) π n ) ) P=9\prod_{k=1}^{(n-1)/2}\left(5-4\cos\left(\frac{(2k-1)\pi}{n}\right)\right) Now I consider the n n th roots of 1 -1 , which are the odd powers of e π i / n e^{\pi{i}/n} , to find x n + 1 x^n+1 = ( x + 1 ) k = 1 ( n 1 ) / 2 ( x e ( 2 k 1 ) π i / n ) ( x e ( 2 k 1 ) π i / n ) = ( x + 1 ) k = 1 ( n 1 ) / 2 ( x 2 + 1 2 x cos ( ( 2 k 1 ) π n ) ) =(x+1)\prod_{k=1}^{(n-1)/2}(x-e^{(2k-1)\pi{i}/n})(x-e^{-(2k-1)\pi{i}/n})=(x+1)\prod_{k=1}^{(n-1)/2}\left(x^2+1-2x\cos\left(\frac{(2k-1)\pi}{n}\right)\right) Plugging in x = 2 x=2 gives 2 n + 1 = 3 k = 1 ( n 1 ) / 2 ( 5 4 cos ( ( 2 k 1 ) π n ) ) 2^n+1=3\prod_{k=1}^{(n-1)/2}\left(5-4\cos\left(\frac{(2k-1)\pi}{n}\right)\right) so P = 9 ( 2 n + 1 3 ) = 3 ( 2 n + 1 ) = 3 2 n + 3 P=9\left(\frac{2^n+1}{3}\right)=3(2^n+1)=3*2^n+3 with a + b + c = 3 + 2 + 3 = 8 a+b+c=3+2+3=\boxed{8}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...