Back to the starting point

Calculus Level 4

The integral 0 2 π d x 6 cos ( x ) 10 = π A \displaystyle \int _0^{2\pi} \frac {dx}{6\cos (x)-10} = \frac{\pi}{A} .

Find the value of A -A .


The answer is 4.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Mark Hennings
May 4, 2016

This type of integral can be handled easily using contour integration. The substitution z = e i x z = e^{ix} converts the integral into one of a rational function of z z around the unit circle, centre 0 0 , which is then equal to 2 π i 2\pi i times the sum of the residues of the integrand at singularities of modulus less than 1 1 . Thus 0 2 π 1 6 cos x 10 d x = z = 1 1 3 z + 3 z 1 10 d z i z = 1 i z = 1 1 3 z 2 10 z + 3 d z = 1 i z = 1 d z ( 3 z 1 ) ( z 3 ) = 2 π R e s z = 1 3 1 ( 3 z 1 ) ( z 3 ) = 2 π 3 ( 1 3 3 ) = 1 4 π \begin{array}{rcl} \displaystyle \int_0^{2\pi} \frac{1}{6\cos x - 10}\,dx & = & \displaystyle \int_{|z|=1} \frac{1}{3z + 3z^{-1} - 10} \,\frac{dz}{iz} \; = \; \frac{1}{i} \int_{|z|=1} \frac{1}{3z^2 - 10z + 3}\,dz \\ & = & \displaystyle \frac{1}{i}\int_{|z|=1} \frac{dz}{(3z-1)(z-3)} \; = \; 2\pi \,\mathrm{Res}_{z=\frac13} \frac{1}{(3z-1)(z-3)} \\ & = & \displaystyle \frac{2\pi}{3(\frac13-3)} \; =\; -\tfrac14\pi \end{array} making the answer 4 \boxed{4} .

I = 0 2 π d x 6 cos x 10 Since the integrand is even = 2 0 π d x 6 cos x 10 Let t = tan ( x 2 ) d t = 1 + t 2 2 d x cos x = 1 t 2 1 + t 2 = 2 0 π d x 6 ( 1 t 2 1 + t 2 ) 10 = 2 0 π ( 1 + t 2 ) d x 2 ( 3 3 t 2 5 5 t 2 ) = 2 0 d t 2 + 8 t 2 = 0 d t 1 + 4 t 2 Let u = 2 t d u = 2 d t = 1 2 0 d u 1 + u 2 = tan 1 u 2 0 = 1 2 × π 2 = π 4 \begin{aligned} I & = \int_0^{2 \pi} \frac{dx}{6\cos x - 10} \quad \quad \small \color{#3D99F6}{\text{Since the integrand is even}} \\ & = \color{#3D99F6}{2} \int_0^{\color{#3D99F6}{\pi}} \frac{dx}{6\color{#D61F06}{\cos x} - 10} \quad \quad \small \color{#D61F06}{\text{Let }t = \tan \left(\frac{x}{2}\right) \implies dt = \frac{1+t^2}{2}dx \implies \cos x = \frac{1-t^2}{1+t^2}} \\ & = 2 \int_0^{\pi} \frac{dx}{6\left(\color{#D61F06}{\frac{1-t^2}{1+t^2}}\right) - 10} \\ & = 2 \int_0^{\pi} \frac {\color{#D61F06}{(1+ t^2) dx}}{\color{#D61F06}{2}\left(3-3t^2-5-5t^2\right)} \\ & = 2 \int_0^{\color{#D61F06}\infty} \frac {-\color{#D61F06}{dt}}{2+8t^2} \\ & = - \int_0^{\infty} \frac{d\color{#3D99F6}{t}}{1+\color{#3D99F6}{4t^2}} \quad \quad \small \color{#3D99F6}{\text{Let } u = 2t \implies du = 2 dt } \\ & = - \color{#3D99F6}{\frac{1}{2}} \int_0^{\infty} \frac{d\color{#3D99F6}{u}}{1+\color{#3D99F6}{u^2}} \\ & = - \frac{\tan^{-1} u}{2} \bigg|_0^\infty = - \frac{1}{2} \times \frac{\pi}{2} = - \frac{\pi}{4} \end{aligned}

A = 4 \implies -A = \boxed{4}

dat was easy

Gaurav Chahar - 5 years, 1 month ago

does not deserve level4

Gaurav Chahar - 5 years, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...