Back

Algebra Level 3

( 1 + i ) 103 ( 1 i ) 101 = ? \large { \frac { { (1+i) }^{ 103 } }{ { (1-i) }^{ 101 } } = \ ? }

1 2 -2 Undefined

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Prasun Biswas
Apr 23, 2015

Elementary approach:

( 1 + i ) 103 ( 1 i ) 101 = ( 1 + i ) 103 ( 1 + i ) 101 ( ( 1 i ) ( 1 + i ) ) 101 = ( ( 1 + i ) 2 ) 102 ( 1 + 1 ) 101 = ( 2 i ) 102 2 101 = 2 i 102 = 2 ( 1 ) 51 = ( 2 ) \begin{aligned}\frac{(1+i)^{103}}{(1-i)^{101}}=\frac{(1+i)^{103}\cdot(1+i)^{101}}{\bigg((1-i)(1+i)\bigg)^{101}}&=\frac{\bigg((1+i)^2\bigg)^{102}}{(1+1)^{101}}\\&=\frac{(2i)^{102}}{2^{101}}=2\cdot i^{102}=2\cdot (-1)^{51}=(-2)\end{aligned}


Using Euler's Formula / De-Moivre's Theorem:

Expressing z = ( 1 + i ) z=(1+i) in polar form gives z = r e i θ z=re^{i\theta} with r = 2 r=\sqrt2 and θ = π 4 \theta=\frac{\pi}{4} . Also, it gives us that ( 1 i ) = z = r e i θ (1-i)=\overline{z}=re^{-i\theta}

( 1 + i ) 103 ( 1 i ) 101 = ( r e i θ ) 103 ( r e i θ ) 101 = r 2 e 204 i θ = ( 2 ) 2 e 51 π i = 2 ( cos ( 51 π ) + i sin ( 51 π ) ) = 2 ( 1 + 0 i ) = ( 2 ) \begin{aligned}\frac{(1+i)^{103}}{(1-i)^{101}}=\frac{(re^{i\theta})^{103}}{(re^{-i\theta})^{101}}&=r^2\cdot e^{204i\theta}\\&=(\sqrt2)^2\cdot e^{51\pi i}\\&=2\bigg(\cos(51\pi)+i\sin(51\pi)\bigg)=2(-1+0i)=(-2)\end{aligned}

Moderator note:

Great!

Gamal Sultan
Apr 25, 2015

(1 + i)^2 = 2i

(1 + i)/(1 - i) = i

i^101 = i

The given expression = (2i)(i) = -2

Moderator note:

Yes. Don't let the large numbers scare you. Great job!

Short and elegant!

Otto Bretscher - 6 years, 1 month ago
Vishnu Bhagyanath
Apr 25, 2015

( 1 + i ) 103 ( 1 i ) 101 \frac { { (1+i) }^{ 103 } }{ { (1-i) }^{ 101 } } Evaluating the following : ( 1 + i ) 2 = 2 i (1+i) ^{ 2 } = 2i ( 1 i ) 2 = 2 i (1-i) ^{ 2 } = -2i Therefore, the following equation ( 1 + i ) 100 ( 1 + i ) 3 ( 1 i ) 100 ( 1 i ) \frac { { (1+i) }^{ 100 } { (1+i) }^{ 3 } }{ { (1-i) }^{ 100 } { (1-i) } } simplifies to ( 1 + i ) 3 ( 1 i ) \frac { { (1+i) }^{ 3 } }{ { (1-i) } } ( 1 + i ) 2 ( 1 + i ) ( 1 i ) \frac { { (1+i) }^{ 2 } { (1+i) } }{ { (1-i) } } Now, ( 1 + i ) ( 1 i ) = i \frac { { (1+i) } }{ { (1-i) } } = i Therefore we get, ( 2 i ) ( i ) (2i) (i) 2 \boxed{-2}

( 1 + i ) 2 = 2 i (1+i)^2=2i

1 + i 1 i = i \frac{1+i}{1-i}=i

( 1 + i ) 103 ( 1 i ) 101 = ( 1 + i 1 i ) 101 ( 1 + i ) 2 = i 101 × 2 i = 2 \frac{(1+i)^{103}}{(1-i)^{101}}=(\frac{1+i}{1-i})^{101}(1+i)^2=i^{101}\times2i=\boxed{-2}

Moderator note:

Yes. Don't let the large numbers scare you. Great job!

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...