Such Big Denominator you got there!

Algebra Level 3

We have 3 3 non-negative real numbers a , b , c {a,b,c} such that a b c = 1 abc=1 .

When the maximum value of the expression

2 2 a b + 2 a c + 2 b c + a 2 + b 2 + c 2 \dfrac{2}{2ab+2ac+2bc+a^2+b^2+c^2}

is expressed in the form x y \dfrac{x}{y} for coprime positive integers x x and y y

What is the value of x + y x+y ?


The answer is 11.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

5 solutions

Thiago Martinoni
Feb 24, 2015

a b c = 1 abc=1 so 1 a , 1 b , 1 c 1\ge a, 1\ge b, 1\ge c

Implies that the maximum value of a + b + c a+b+c is 3 3 Where a = b = c = 1 a=b=c=1

Note that:

2 2 a b + 2 a c + 2 b c + a 2 + b 2 + c 2 = 2 ( a + b + c ) 2 \dfrac{2}{2ab+2ac+2bc+a^2+b^2+c^2} = \frac { 2 }{ { (a+b+c) }^{ 2 } }

= 2 ( 3 ) 2 \frac { 2 }{ { (3) }^{ 2 } } = 2 9 \frac { 2 }{ 9 }

So x = 2 x=2 and y = 9 y=9

x + y = 11 x+y=11

Hi friend Martinoni, i like very much your resolução, congratulations, i love you, but i queria desgostar dela <3

Gabrielle Giordano - 6 years, 3 months ago

EU SOU DO BRASIL COM S BRILLIANT NÃO É TÃO BRILLIANT ASSIM EM

Gabrielle Giordano - 6 years, 3 months ago

Perfect solution!!

Mehul Arora - 6 years, 2 months ago

Oloco hein

David Amato Mantegari - 5 years, 9 months ago
Mehul Chaturvedi
Jan 2, 2015

2 2 a b + 2 a c + 2 b c + a 2 + b 2 + c 2 \dfrac { 2 }{ 2ab+2ac+2bc+a^{ 2 }+b^{ 2 }+c^{ 2 } }

For is maxima we need to calculate minima of 2 a b + 2 a c + 2 b c + a 2 + b 2 + c 2 2ab+2ac+2bc+a^{ 2 }+b^{ 2 }+c^{ 2 }

By AM-GM

a b + b c + c a 3 ( a b c ) 2 3 a b + b c + c a 1 × 3 2 a b + 2 b c + 2 c a 6 \Rightarrow \dfrac { ab+bc+ca }{ 3 } \geq \sqrt [ 3 ]{ (abc)^{ 2 } } \\ \Rightarrow ab+bc+ca\geq 1\times 3\\ \Rightarrow 2ab+2bc+2ca\geq 6

Again by AM GM

a 2 + b 2 + c 2 3 ( a b c ) 2 3 a 2 + b 2 + c 2 3 1 a 2 + b 2 + c 2 3 2 2 a b + 2 a c + 2 b c + a 2 + b 2 + c 2 2 6 + 3 2 2 a b + 2 a c + 2 b c + a 2 + b 2 + c 2 2 9 \Rightarrow \dfrac { a^{ 2 }+b^{ 2 }+c^{ 2 } }{ 3 } \geq \sqrt [ 3 ]{ (abc)^{ 2 } } \\ \Rightarrow \dfrac { a^{ 2 }+b^{ 2 }+c^{ 2 } }{ 3 } \geq 1\\ \quad \Rightarrow a^{ 2 }+b^{ 2 }+c^{ 2 }\geq 3\\ \Rightarrow \dfrac { 2 }{ 2ab+2ac+2bc+a^{ 2 }+b^{ 2 }+c^{ 2 } } \leq \dfrac { 2 }{ 6+3 } \\ \\ \Rightarrow \dfrac { 2 }{ 2ab+2ac+2bc+a^{ 2 }+b^{ 2 }+c^{ 2 } } \leq \dfrac { 2 }{ 9 }

x + y = 11 \color{royalblue}{\huge\Rightarrow\boxed{x+y=11}}

Josh Speckman
Sep 2, 2014

First, note that the expression a + b + c a b c = 1 a b + 1 a c + 1 b c \dfrac{a+b+c}{abc} = \dfrac{1}{ab} + \dfrac{1}{ac} + \dfrac{1}{bc} . Then, multiply by a + b + c a+b+c again to obtain a + b + c a b + a + b + c a c + a + b + c b c = 1 b + 1 a + c a b + 1 c + b a c + 1 a + a b c + 1 c + 1 b = 2 a + 2 b + 2 c + a b c + b a c + c a b \dfrac{a+b+c}{ab} + \dfrac{a+b+c}{ac} + \dfrac{a+b+c}{bc} = \dfrac{1}{b} + \dfrac{1}{a} + \dfrac{c}{ab} + \dfrac{1}{c} + \dfrac{b}{ac} + \dfrac{1}{a} + \dfrac{a}{bc} + \dfrac{1}{c} + \dfrac{1}{b} = \dfrac{2}{a} + \dfrac{2}{b} + \dfrac{2}{c} + \dfrac{a}{bc} + \dfrac{b}{ac} + \dfrac{c}{ab} . We take the reciprocal of this exression to obtain 1 2 a + 2 b + 2 c + a b c + b a c + c a b \dfrac{1}{\dfrac{2}{a} + \dfrac{2}{b} + \dfrac{2}{c} + \dfrac{a}{bc} + \dfrac{b}{ac} + \dfrac{c}{ab}} , and mulitply by 1 a b c = 1 1 \dfrac{1}{abc} = \dfrac{1}{1} to obtain 1 2 b c + 2 a b + 2 a c + a 2 + b 2 + c 2 \dfrac{1}{2bc+2ab+2ac+a^2+b^2+c^2} , then multiply by 2 2 to obtain the desired expression. Thus, our expression is equal to 2 ( a + b + c ) 2 \dfrac{2}{(a+b+c)^2} , where a + b + c = 3 a+b+c=3 , Thus, we have 2 9 \dfrac{2}{9} , and 2 + 9 = 11 2+9=\boxed{11} .

I think that you will need to specify in the question that a , b , c a,b,c are non-negative integers. Otherwise, we could have, say, a = 1 , b = c = 1 a = 1, b = c = -1 , making the expression equal to 2 > 2 9 2 \gt \frac{2}{9} .

If a , b , c a,b,c are all non-negative integers, then by the AM-GM inequality, given the condition a b c = 1 abc = 1 , we can indeed show that ( a + b + c ) 3 (a + b + c) \ge 3 , thus implying that

2 ( a + b + c ) 2 2 9 \dfrac{2}{(a + b + c)^{2}} \le \dfrac{2}{9} .

Brian Charlesworth - 6 years, 9 months ago

We know that A.M. > G.M.

So (a+b+c)/3 > 1 which gives a+b+c is always greater than or equal to 3. Thus least value of a+b+c is 3

Now 2 / (2ab +2bc + 2ca + a^2 + b^2 + c^2) = 2/(a+b+c)^2 thus its max value is possible when a+b+c have its least value i.e. 3

So max value of expression is 2/9

therefore 2+9 = 11

U Z
Sep 20, 2014

(2ab + 2ac +2bc + a^{2} +b^{2} +c^{2}) =( \boxed{(a + b +c )^{2}) and min value of( \boxed{(a + b +c )^{2}) is 3

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...