Bad Ineq

Algebra Level pending

a , b , c {a,b,c} are nonnegative real numbers. Find the minimum value of a 2 b c + b 2 a c + c 2 a b + 3 ( a + b c + a + c b + b + c a ) \dfrac{a^2}{bc} + \dfrac{b^2}{ac} + \dfrac{c^2}{ab} + 3(\dfrac{a+b}{c} + \dfrac{a+c}{b} + \dfrac{b+c}{a} )


The answer is 21.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Josh Speckman
Jul 18, 2014

We simplify a 2 b c + b 2 a c + c 2 a b + 3 ( a + b c + a + c b + b + c a ) \dfrac{a^2}{bc} + \dfrac{b^2}{ac} + \dfrac{c^2}{ab} + 3(\dfrac{a+b}{c} + \dfrac{a+c}{b} + \dfrac{b+c}{a} ) to a 3 + 3 a 2 b + 3 a 2 c + b 3 + 3 a b 2 + 3 b 2 c + c 2 + a c 2 + b c 2 a b c \dfrac{a^3 +3a^2b + 3a^2c + b^3 + 3ab^2 + 3b^2c + c^2 + ac^2 + bc^2}{abc} , which factors to ( a + b + c ) 3 6 a b c a b c \dfrac{(a+b+c)^3 - 6abc}{abc} . Let this be equal to x x . Now, multiply by a b c abc to get ( a + b + c ) 3 6 a b c = a b c x (a+b+c)^3 - 6abc = abcx . Add 6 a b c 6abc to both sides to get a + b + c ) 3 = a b c ( x + 6 ) a+b+c)^3 = abc(x+6) . Now, divide by x + 6 x+6 to get ( a + b + c ) 3 x + 6 = a b c \dfrac{(a+b+c)^3}{x+6} = abc . Take the cubic root to get a + b + c x + 6 3 = a b c 3 \dfrac{a+b+c}{\sqrt[3]{x+6}} = \sqrt[3]{abc} . We know by AM-GM that a + b + c 3 a b c 3 \dfrac{a+b+c}{3} \ge \sqrt[3]{abc} . If x + 6 3 < 3 \sqrt[3]{x+6} < 3 , then we will have a + b + c x + 6 3 < a b c 3 \dfrac{a+b+c}{\sqrt[3]{x+6}} < \sqrt[3]{abc} , which is impossible. Thus, x + 6 3 3 x + 6 27 x 21 \sqrt[3]{x+6} \ge 3 \rightarrow x+6 \ge 27 \rightarrow x \ge 21 and the minimum value is 21 \boxed{21} .

Rohit Sachdeva
Sep 21, 2014

When we simplify the numerator we get,

{a³+b³+c³+3ab(a+b)+3ac(a+c)+3bc(b+c)} /abc

={(a+b+c)³-6abc}/abc

Now by AM≥GM

(a+b+c/3)≥³√abc

(a+b+c)³/27≥abc

(a+b+c)³/abc≥27

So our original expression ≥27-6=21

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...