Ball, Don't Fall! - Part 2

A solid spherical ball of radius r = 2 m r=2 \ \text{m} is carefully placed on top of a fixed hemisphere of radius R = 10 m R=10 \ \text{m} as shown. It is then pushed very slightly.


If the ball doesn't slip till it makes an angle θ = 3 0 o \theta=30^{\text{o}} with the vertical, then the minimum required value of coefficient of friction between the ball and the hemisphere is 2 a b c \dfrac{2}{a\sqrt{b}-c}

where a , b a,b and c c are co-prime positive integers. Find a + b + c a+b+c


Details And Assumptions

  • Take g = 9.8 m s 2 g=9.8 \ \text{m}\text{s}^{-2} in the downward direction if needed.


The answer is 40.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Deepanshu Gupta
Nov 8, 2014

Using energy conservation between θ = 0 \theta=0 and θ = 30 \theta=30 In ICR frame

m g r ( 1 cos θ ) = 1 2 I b o t t o m ω 2 = 7 10 m r 2 ω 2 r ω 2 = 10 g ( 1 cos θ ) 7 . . . . . . . ( 1 ) mgr(1-\cos { \theta } )\quad =\quad \cfrac { 1 }{ 2 } { I }_{ bottom }{ \omega }^{ 2 }\\ \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad =\quad \cfrac { 7 }{ 10 } m{ r }^{ 2 }{ \omega }^{ 2 }\\ \\ r{ \omega }^{ 2 }\quad =\quad \cfrac { 10g(1-\cos { \theta } ) }{ 7 } \quad \quad .\quad .\quad .\quad .\quad .\quad .\quad .\quad \quad (1) .

Now writing equation in Common normal direction of sphere

m g cos θ N = m r ω 2 f = μ N = μ g ( m g cos θ m r ω 2 ) . . . . . ( 2 ) mg\cos { \theta } \quad -\quad N\quad =\quad m{ r }{ \omega }^{ 2 }\\ \\ f\quad =\quad \mu N\quad =\quad \mu g(mg\cos { \theta } \quad -\quad m{ r }{ \omega }^{ 2 })\quad \quad \quad .....\quad (2) .

Now using torque equation about COM .

τ = f r = 2 5 m r 2 α . . . . . . . ( 3 ) r α = 5 μ 2 ( g cos θ r ω 2 ) . . . . . . ( 4 ) \tau \quad =\quad fr\quad =\cfrac { 2 }{ 5 } m{ r }^{ 2 }\alpha \quad \quad \quad .......\quad (3)\\ \\ r\alpha \quad =\quad \cfrac { 5\mu }{ 2 } (g\cos { \theta } \quad -\quad { r }{ \omega }^{ 2 })\quad ......(4)\\ .

Now writing equation along common tangent :

m g sin θ f = m a c o m . . . . . . ( 5 ) a c o m = r α . . . . . . . . ( 6 ) mg\sin { \theta } \quad -\quad f\quad =\quad m{ a }_{ com }\quad \quad ......\quad (5)\\ \\ \because \quad { a }_{ com }\quad =\quad r\alpha \quad \quad \quad \quad ........(6)\\ .

Now By putting θ = 30 \theta=30 . and using all equations we get

μ = 2 17 3 20 \boxed { \mu \quad =\quad \frac { 2 }{ 17\sqrt { 3 } \quad -\quad 20 } } .

I am now a big fan of yours!👍👍👍👍👍

Ashwin Gopal - 6 years, 5 months ago

Did you complete iridov for physics? Are you a repeater (bcs u are18 yrs old) ?

Ashwin Gopal - 6 years, 5 months ago

In the first step isn't it mg(R+r)(1-cos30)

A Former Brilliant Member - 4 years, 11 months ago

In the first step isn't it mgR(1-cos30)

Ashwin Gopal - 6 years, 5 months ago
Akshay Bodhare
Nov 17, 2014

during motion there are two components of acceleration,tangential and radial

mg sin θ \sin \theta - f = ma ...(1)

mg cos θ \cos \theta - N = m v 2 ( R + r ) m \cdot \frac {v^2}{(R+r)} ...(2)

also,by applying torque equation about center of ball

fr= I a ( r ) I \cdot \frac {a}{(r)} ...(3)

Also,

a= v d v d s v \cdot \frac {dv}{ds}

where ds= ( R + r ) d θ (R+r) \cdot d \theta

Therefore,

v d v v \cdot dv = a ( R + r ) d θ a(R+r) \cdot d \theta ....(4)

from (3) and (1),

f= m g sin θ ( 1 + m r 2 I ) \frac {mg \sin \theta}{(1+ \frac {mr^2}{I})} ....(5)

Now,from (3),(4) and (5),

v d v v \cdot dv = m g sin θ ( I + m r 2 ) r 2 ( R + r ) d θ \frac {mg \sin \theta}{(I+mr^2)} \cdot r^2(R+r) \cdot d \theta

we then integrate this and then substitute v 2 v^2 in (2),from this we get N

Then for limiting condition, we use,

f = μ N f= \mu N ....(6)

we substitute the value of N and f in (6) to get coefficient of friction

we then substitute all the values to get the answer.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...