Basel Problem Extension

Algebra Level 3

In 1734, Euler solved the Basel problem, proving that: π 2 6 = 1 1 2 + 1 2 2 + 1 3 2 + 1 4 2 + \frac{\pi^2}{6} = \frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\cdots

Mary accidentally burns a lot of the fractions in the series, so now only the fractions with odd denominators remain. So, the series is now,

π 2 N = 1 1 2 + 1 3 2 + 1 5 2 + 1 7 2 + \frac{\pi^2}{N}= \frac{1}{1^2}+\frac{1}{3^2}+\frac{1}{5^2}+\frac{1}{7^2}+\cdots

for some integer N N . Compute N N .


The answer is 8.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Bryan Hung
Dec 21, 2017

Let's instead find the sum of all the fractions in the series with an even denominator. Note that:

1 2 2 + 1 4 2 + 1 6 2 + 1 8 2 + = 1 4 ( 1 1 2 + 1 2 2 + 1 3 2 + 1 4 2 + ) = 1 4 ( π 2 6 ) = π 2 24 \frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+\cdots = \frac{1}{4}{(}\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\cdots{)}=\frac{1}{4}{(}\frac{\pi^2}{6}{)}=\frac{\pi^2}{24}

Now it's easy:

( 1 1 2 + 1 3 2 + 1 5 2 + 1 7 2 + ) + ( 1 2 2 + 1 4 2 + 1 6 2 + 1 8 2 + ) = 1 1 2 + 1 2 2 + 1 3 2 + 1 4 2 + {(}\frac{1}{1^2}+\frac{1}{3^2}+\frac{1}{5^2}+\frac{1}{7^2}+\cdots{)} + {(}\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+\cdots{)} =\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\cdots

( 1 1 2 + 1 3 2 + 1 5 2 + 1 7 2 + ) + π 2 24 = π 2 6 {(}\frac{1}{1^2}+\frac{1}{3^2}+\frac{1}{5^2}+\frac{1}{7^2}+\cdots{)} + \frac{\pi^2}{24} =\frac{\pi^2}{6}

1 1 2 + 1 3 2 + 1 5 2 + 1 7 2 + = π 2 8 \frac{1}{1^2}+\frac{1}{3^2}+\frac{1}{5^2}+\frac{1}{7^2}+\cdots =\boxed{\frac{\pi^2}{8}}

Chew-Seong Cheong
Dec 21, 2017

S = 1 1 2 + 1 3 2 + 1 5 2 + 1 7 2 + = 1 1 2 + 1 2 2 + 1 3 2 + 1 4 2 + ( 1 2 2 + 1 4 2 + 1 6 2 + 1 8 2 + ) = 1 1 2 + 1 2 2 + 1 3 2 + 1 4 2 + 1 4 ( 1 1 2 + 1 2 2 + 1 3 2 + 1 4 2 + ) = π 2 6 1 4 ( π 2 6 ) = π 2 8 \begin{aligned} S & = \frac 1{1^2} + \frac 1{3^2} + \frac 1{5^2} + \frac 1{7^2} + \cdots \\ & = \frac 1{1^2} + \frac 1{2^2} + \frac 1{3^2} + \frac 1{4^2} + \cdots - \left( \frac 1{2^2} + \frac 1{4^2} + \frac 1{6^2} + \frac 1{8^2} + \cdots \right) \\ & = {\color{#3D99F6}\frac 1{1^2} + \frac 1{2^2} + \frac 1{3^2} + \frac 1{4^2} + \cdots} - \frac 14 \left({\color{#3D99F6}\frac 1{1^2} + \frac 1{2^2} + \frac 1{3^2} + \frac 1{4^2} + \cdots} \right) \\ & = {\color{#3D99F6} \frac {\pi^2}6} - \frac 14 \left({\color{#3D99F6} \frac {\pi^2}6} \right) \\ & = \frac {\pi^2}8 \end{aligned}

N = 8 \implies N = \boxed{8}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...