Bashing Available Part 1

Algebra Level 5

Given that:-

a 1 + a 2 + a 3 + a 4 = 1 a_1+a_2+a_3+a_4=1

a 1 2 + a 2 2 + a 3 2 + a 4 2 = 2 a_1^2+a_2^2+a_3^2+a_4^2=2

a 1 3 + a 2 3 + a 3 3 + a 4 3 = 3 a_1^3+a_2^3+a_3^3+a_4^3=3

a 1 4 + a 2 4 + a 3 4 + a 4 4 = 4 a_1^4+a_2^4+a_3^4+a_4^4=4 ;

The value of a 1 5 + a 2 5 + a 3 5 + a 4 5 a_1^5+a_2^5+a_3^5+a_4^5 can be expressed as the rational number p q \frac{p}{q} , where p p and q q are mutually prime positive integers. Determine p + q p+q .

a m n a_{m}^{n} is the n t h n^{th} power of the number a m a_m


The answer is 163.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Let's use Newton sums. Let S k = a 1 k + a 2 k + a 3 k + a 4 k S_k=a_1^k+a_2^k+a_3^k+a_4^k and let P ( x ) = x 4 + m x 3 + n x 2 + p x + q = 0 P(x)=x^4+mx^3+nx^2+px+q=0 whose roots are a 1 a_1 , a 2 a_2 , a 3 a_3 and a 4 a_4 . We know that S 1 = 1 S_1=1 , S 2 = 2 S_2=2 , S 3 = 3 S_3=3 and S 4 = 4 S_4=4 , and:

S 1 = m m = 1 S_1=-m \Longrightarrow m=-1

S 2 = m S 1 2 n n = 1 2 S_2=-mS_1-2n \Longrightarrow n=-\dfrac{1}{2}

S 3 = m S 2 n S 1 3 p p = 1 6 S_3=-mS_2-nS_1-3p \Longrightarrow p=-\dfrac{1}{6}

S 4 = m S 3 n S 2 p S 1 4 q q = 1 24 S_4=-mS_3-nS_2-pS_1-4q \Longrightarrow q=\dfrac{1}{24}

So, P ( x ) = x 4 x 3 1 2 x 2 1 6 x + 1 24 P(x)=x^4-x^3-\dfrac{1}{2}x^2-\dfrac{1}{6}x+\dfrac{1}{24} .

Now, by recursion we have:

S k = m S k 1 n S k 2 p S k 3 q S k 4 S_k=-mS_{k-1}-nS_{k-2}-pS_{k-3}-qS_{k-4}

S k = S k 1 + 1 2 S k 2 + 1 6 S k 3 1 24 S k 4 S_k=S_{k-1}+\dfrac{1}{2} S_{k-2}+\dfrac{1}{6} S_{k-3}-\dfrac{1}{24} S_{k-4}

Obtain S 5 S_5 , which is the value we want:

S 5 = S 4 + 1 2 ( S 3 ) + 1 6 ( S 2 ) 1 24 ( S 1 ) S_5=S_4+\dfrac{1}{2} \left(S_3\right) + \dfrac{1}{6} \left(S_2\right)-\dfrac{1}{24} \left(S_1\right)

S 5 = 4 + 3 2 + 1 3 1 24 S_5=4+\dfrac{3}{2}+\dfrac{1}{3}-\dfrac{1}{24}

S 5 = 139 24 \boxed{S_5=\dfrac{139}{24}}

Hence our final answer is 139 + 24 = 163 139+24=\boxed{163} .

WOW. Perfect solution. Thanks. Also, as the title says, someone try bashing it up...

Satvik Golechha - 6 years, 9 months ago
Chew-Seong Cheong
Oct 28, 2014

There is a neat way to do this with Newton's Sums:

Let:

P 1 = a 1 + a 2 + a 3 + a 4 S 1 = a 1 + a 2 + a 3 + a 4 P_1 = a_1+a_2+a_3+a_4 \quad S_1 = a_1 + a_2 + a_3 + a_4

P 2 = a 1 2 + a 2 2 + a 3 2 + a 4 2 S 2 = a 1 a 2 + a 1 a 3 + a 1 a 4 + a 2 a 3 + a 2 a 4 + a 3 a 4 P_2 = a_1^2+a_2^2+a_3^2+a_4^2 \quad S_2 = a_1a_2 + a_1a_3 + a_1a_4+a_2a_3+a_2a_4+a_3a_4

P 3 = a 1 3 + a 2 3 + a 3 3 + a 4 3 S 3 = a 1 a 2 a 3 + a 1 a 2 a 4 + a 1 a 3 a 4 + a 2 a 3 a 4 P_3 = a_1^3+a_2^3+a_3^3+a_4^3 \quad S_3 = a_1a_2a_3 + a_1a_2a_4+a_1a_3a_4+a_2a_3a_4

P 4 = a 1 4 + a 2 4 + a 3 4 + a 4 4 S 4 = a 1 a 2 a 3 a 4 P_4 = a_1^4+a_2^4+a_3^4+a_4^4 \quad S_4 = a_1a_2a_3a_4

Then:

P 1 = S 1 P_1=S_1

P 2 = S 1 P 1 2 S 2 P_2=S_1P_1-2S_2

P 3 = S 1 P 2 S 2 P 1 + 3 S 3 P_3=S_1P_2-S_2P_1+3S_3

P 4 = S 1 P 3 S 2 P 2 + S 3 P 1 4 S 4 P_4=S_1P_3-S_2P_2+S_3P_1-4S_4

P 5 = S 1 P 4 S 2 P 3 + S 3 P 2 S 4 P 1 P_5=S_1P_4-S_2P_3+S_3P_2-S_4P_1

Substitute in the known values:

P 1 = 1 P_1=1

2 = ( 1 ) ( 1 ) 2 S 2 S 2 = 1 2 2=(1)(1)-2S_2\quad \Rightarrow S_2 = -\frac {1}{2}

3 = 2 + 1 2 ( 1 ) + 3 S 3 S 3 = 1 6 3=2+\frac {1}{2} (1) +3S_3 \quad \Rightarrow S_3 = \frac {1}{6}

4 = 3 + 1 2 ( 2 ) + 1 6 ( 1 ) 4 S 4 S 3 = 1 24 4=3+\frac {1}{2}(2)+\frac {1}{6}(1)-4S_4 \quad \Rightarrow S_3 = \frac {1}{24}

P 5 = 4 + 1 2 ( 3 ) + 1 6 ( 2 ) 1 24 ( 1 ) = 139 24 = p q P_5=4+\frac {1}{2}(3)+\frac {1}{6}(2)-\frac {1}{24}(1) = \frac {139}{24} = \frac {p}{q}

p + q = 139 + 24 = 163 \Rightarrow p+ q = 139+24 = \boxed {163}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...