Bashing Fibonacci

Algebra Level 4

a 1 + a 2 + a 3 + a 4 + a 5 = 1 a 1 2 + a 2 2 + a 3 2 + a 4 2 + a 5 2 = 1 a 1 3 + a 2 3 + a 3 3 + a 4 3 + a 5 3 = 2 a 1 4 + a 2 4 + a 3 4 + a 4 4 + a 5 4 = 3 a 1 5 + a 2 5 + a 3 5 + a 4 5 + a 5 5 = 5 \begin{aligned} a_{1}+a_{2}+a_{3}+a_{4}+a_{5}&=&1\\ a_{1}^{2}+a_{2}^{2}+a_{3}^{2}+a_{4}^{2}+a_{5}^{2}&=&1\\ a_{1}^{3}+a_{2}^{3}+a_{3}^{3}+a_{4}^{3}+a_{5}^{3}&=&2\\ a_{1}^{4}+a_{2}^{4}+a_{3}^{4}+a_{4}^{4}+a_{5}^{4}&=&3\\ a_{1}^{5}+a_{2}^{5}+a_{3}^{5}+a_{4}^{5}+a_{5}^{5}&=&5\\ \end{aligned}

The value of a 1 6 + a 2 6 + a 3 6 + a 4 6 + a 5 6 = m n a_{1}^{6}+a_{2}^{6}+a_{3}^{6}+a_{4}^{6}+a_{5}^{6}=\dfrac{m}{n}

where m , n m , n are coprime positive integers.

Find the value of m n m-n .


The answer is 77.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Nov 30, 2014

Let P n = a 1 n + a 2 n + a 3 n + a 4 n + a 5 n P_n = a_1^n+a_2^n+a_3^n+a_4^n+a_5^n , where n = 1 , 2 , 3... n = 1,2,3... and

S 1 = a 1 + a 2 + a 3 + a 4 + a 5 S_1 = a_1+a_2+a_3+a_4+a_5

S 2 = a 1 a 2 + a 1 a 3 + a 1 a 4 + a 1 a 5 + a 2 a 3 + a 2 a 4 + a 2 a 5 + a 3 a 4 + a 3 a 5 + a 4 a 5 S_2 = a_1a_2 + a_1a_3 + a_1a_4 + a_1a_5 + a_2a_3 \\ \quad \quad + a_2a_4 + a_2a_5 + a_3a_4 + a_3a_5 + a_4a_5

S 3 = a 1 a 2 a 3 + a 1 a 2 a 4 + a 1 a 2 a 5 + a 1 a 3 a 4 + a 1 a 3 a 5 + a 1 a 4 a 5 + a 2 a 3 a 4 + a 2 a 3 a 5 + a 2 a 4 a 5 + a 3 a 4 a 5 S_3 = a_1a_2a_3 + a_1a_2a_4 + a_1a_2a_5 + a_1a_3a_4 + a_1a_3a_5 \\ \quad \quad + a_1a_4a_5 + a_2a_3a_4 + a_2a_3a_5 + a_2a_4a_5 + a_3a_4a_5

S 4 = a 1 a 2 a 3 a 4 + a 1 a 2 a 3 a 5 + a 1 a 2 a 4 a 5 + a 1 a 3 a 4 a 5 + a 2 a 3 a 4 a 5 S_4 = a_1a_2a_3a_4 + a_1a_2a_3a_5 + a_1a_2a_4a_5 + a_1a_3a_4a_5 + a_2a_3a_4a_5

S 5 = a 1 a 2 a 3 a 4 a 5 S_5 = a_1a_2a_3a_4a_5

Using Newton's Identities/Sums , the relationships between P n P_n and S n S_n are as follows:

{ P 1 = S 1 = 1 P 2 = S 1 P 1 2 S 2 = 1 P 3 = S 1 P 2 S 2 P 1 + 3 S 3 = 2 P 4 = S 1 P 3 S 2 P 2 + S 3 P 1 4 S 4 = 3 P 5 = S 1 P 4 S 2 P 3 + S 3 P 2 S 4 P 1 + 5 S 5 = 5 P 6 = S 1 P 5 S 2 P 4 + S 3 P 3 S 4 P 2 + S 5 P 1 = m n \begin {cases} P_1 = S_1 & = 1 \\ P_2 = S_1P_1 - 2S_2 & = 1 \\ P_3 = S_1P_2 - S_2P_1 + 3S_3 & = 2 \\ P_4 = S_1P_3 - S_2P_2 + S_3P_1 - 4S_4 & = 3 \\ P_5 = S_1P_4 - S_2P_3 + S_3P_2 - S_4P_1 + 5S_5 & = 5 \\ P_6 = S_1P_5 - S_2P_4 + S_3P_3 - S_4P_2 + S_5P_1 & = \dfrac {m}{n} \end {cases}

Substituting in the known values of P n P_n , we have:

{ 1 = S 1 S 1 = 1 1 = 1 2 S 2 S 2 = 0 2 = 1 0 + 3 S 3 S 3 = 1 3 3 = 2 0 + 1 3 4 S 4 S 4 = 1 6 5 = 3 0 + 1 3 + 1 6 + 5 S 5 S 5 = 3 10 P 6 = 5 0 + 2 3 + 1 6 + 3 10 = 92 15 = m n \begin {cases} 1 = S_1 & \Rightarrow S_1 = 1 \\ 1 = 1 - 2S_2 & \Rightarrow S_2 = 0 \\ 2 = 1 - 0 + 3S_3 & \Rightarrow S_3 = \frac {1}{3} \\ 3 = 2 - 0 + \frac {1}{3} - 4S_4 &\Rightarrow S_4 = -\frac {1}{6} \\ 5 = 3 - 0 + \frac {1}{3} + \frac {1}{6} + 5S_5 & \Rightarrow S_5 = \frac {3}{10} \\ P_6 = 5 - 0 + \frac {2}{3} + \frac {1}{6} + \frac {3}{10} & = \frac {92}{15} = \frac {m}{n} \end {cases}

m n = 92 15 = 77 \Rightarrow m - n = 92-15 = \boxed {77}

Perfect!

Shubhendra Singh - 6 years, 6 months ago

One can directly use Newton's Theorem on Power Sums

Souryajit Roy - 6 years, 6 months ago

Log in to reply

Yeah, that's the method I used because that's the first approach I thought of when seeing the equations.

tytan le nguyen - 6 years, 6 months ago

can anyone explain to me the newtons sums formula?

Mardokay Mosazghi - 6 years, 6 months ago

Log in to reply

You may refer to: Newton's Identities

Chew-Seong Cheong - 6 years, 6 months ago

Sorry, it is Newton's Sums and not Vieta's Sums. I have edited it.

Chew-Seong Cheong - 6 years, 6 months ago

same i have done.. :) Newtons Sum Formula..

Ƨarthi Nayak - 5 years, 7 months ago

Does the set of equations have solution?

Tran Hieu - 5 years, 5 months ago

Log in to reply

They are the roots of the equation x 5 x 4 1 3 x 2 1 6 x 3 10 = 0 x^{5}-x^{4}-\dfrac{1}{3}x^{2}-\dfrac{1}{6}x-\dfrac{3}{10}=0

Shubhendra Singh - 5 years, 5 months ago

Yes, as Shubhendra Singh mentioned. They are the roots of x 5 S 1 x 4 + S 2 x 3 S 3 x 2 + S 4 x S 5 = x 5 x 4 1 3 x 2 1 6 x 3 10 = 0 x^5 - S_1 x^4 + S_2 x^3 - S_3 x^2 + S_4 x - S_5 = x^5 - x^4 - \frac{1}{3} x^2 - \frac{1}{6} x - \frac{3}{10} = 0 . They can be complex.

Chew-Seong Cheong - 5 years, 5 months ago

Very clever way to solve that…

Jaime Cabrera - 4 years, 10 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...