Bashing Polynomial

Algebra Level 3

If a , b & c a,b \ \& \ c are the roots of the polynomial x 3 2 x 2 + 3 x + 1 x^{3}-2x^{2}+3x+1

Find the value of a 5 + b 5 + c 5 ( a 4 + b 4 + c 4 ) a^{5}+b^{5}+c^{5}-(a^{4}+b^{4}+c^{4})


The answer is 19.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Chew-Seong Cheong
Dec 16, 2014

The problem can be solved by Newton's Sums method.

Let P n = a n + b n + c n P_n = a^n+b^n+c^n , where n = 1 , 2 , 3... n=1,2,3... and:

S 1 = a + b + c = 2 S 2 = a b + b c + c a = 3 S 3 = a b c = 1 S_1=a+b+c = 2 \quad \quad S_2 = ab+bc+ca = 3\quad \quad S_3 = abc = -1 .

Then, P n P_n are given as follows:

{ P 1 = S 1 = 2 P 2 = S 1 P 1 2 S 2 = 2 ( 2 ) 2 ( 3 ) = 2 P 3 = S 1 P 2 S 2 P 1 + 3 S 3 = 2 ( 2 ) 3 ( 2 ) + 3 ( 1 ) = 13 P 4 = S 1 P 3 S 2 P 2 + S 3 P 1 = 2 ( 13 ) 3 ( 2 ) 1 ( 2 ) = 22 P 5 = S 1 P 4 S 2 P 3 + S 3 P 2 = 2 ( 22 ) 3 ( 13 ) 1 ( 2 ) = 3 \begin {cases} P_1 = S_1 & &= 2 \\ P_2 = S_1P_1 - 2S_2 & = 2(2)-2(3) & = -2 \\ P_3 = S_1P_2 - S_2P_1 +3S_3 & = 2(-2)-3(2) + 3(-1) & = -13 \\ P_4 = S_1P_3 - S_2P_2 +S_3P_1 & = 2(-13)-3(-2) -1(2) & = -22 \\ P_5 = S_1P_4 - S_2P_3 +S_3P_2 & = 2(-22)-3(-13) -1(-2) & = -3 \end {cases}

Therefore,

a 5 + b 5 + c 5 ( a 4 + b 4 + c 4 ) = P 5 P 4 = 3 ( 22 ) = 19 a^5+b^5+c^5 - (a^4+b^4+c^4) = P_5 - P_4 = -3 - (-22) = \boxed {19}

Thank you so much. Your solutions have literally been as good as a teacher teaching.

Krishna Ar - 6 years, 5 months ago

I cant understand why newton sums ques. Are so highly overrated on brilliant ... ...

Mohit Gupta - 5 years, 9 months ago

So many questions of the same Type out there. Even I use newtons sums for all of them

Shreyash Rai - 5 years, 6 months ago

The same way i did. Sir, that's a very good solution.

Yash Choudhary - 6 years, 5 months ago

great solution

Meghana Surve - 6 years, 5 months ago

Newton's sums are great!!

Akshat Sharda - 5 years, 9 months ago

Log in to reply

Finally learnt Newton Sum. Pretty interesting and very easy. ..

Anshuman Singh Bais - 5 years, 9 months ago

S o m e t h i n g f r o m f u n d a m e n t a l s . B y V i e t a s : a + b + c = 2. a b + b c + c a = 3. a b c = 1. a 2 + b 2 + c 2 = 2.......................... a 2 + b 2 + c 2 = ( a + b + c ) 2 2 ( a b + b c + c a ) = 2. a 2 b 2 + b 2 c 2 + c 2 a 2 = 13................. a 2 b 2 + b 2 c 2 + c 2 a 2 = ( a b + b c + c a ) 2 2 a b c ( a + b + c ) = 13. a 4 + b 4 + c 4 = 22....................... a 4 + b 4 + c 4 = ( a 2 + b 2 + c 2 ) 2 2 ( a 2 b 2 + b 2 c 2 + c 2 a 2 ) = 22 a 5 + b 5 + c 5 = 3......................... a 5 + b 5 + c 5 = ( a + b + c ) ( a 4 + b 4 + c 4 ) { a ( b 4 + c 4 c ) + b ( c 4 + a 4 ) + c ( a 4 + b 4 ) } . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . = ( a + b + c ) ( a 4 + b 4 + c 4 ) { a b ( a 3 + b 3 ) + b c ( b 3 + c 3 ) + c a ( c 3 + a 3 ) } . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . = ( a + b + c ) ( a 4 + b 4 + c 4 ) { a b ( 13 c 3 ) + b c ( 13 a 3 ) + c a ( 13 b 3 ) } . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . = ( a + b + c ) ( a 4 + b 4 + c 4 ) { 13 ( a b + b c + c a ) a b c ( c 2 + a 2 + b 2 ) } . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ( 2 ) ( 22 ) { 13 ( 3 ) ( 1 ) ( 2 ) } = 3 a 5 + b 5 + c 5 ( a 4 + b 4 + c 4 ) = 3 ( 22 ) = 19. Some~ thing~ from ~fundamentals.\\ By ~Vieta's:-\\ ~~~~~~~~a+b+c=2.\\ ~~~~~ab+bc+ca=3.\\ ~~~~~~~~~~abc= - 1.\\ a^2+b^2+c^2= -2..........................a^2+b^2+c^2=(a+b+c)^2-2(ab+bc+ca)= ~-2.\\ a^2b^2+b^2c^2+c^2a^2=13................. a^2b^2+b^2c^2+c^2a^2=(ab+bc+ca)^2-2abc(a+b+c)=13.\\ a^4+b^4+c^4= - 22.......................a^4+b^4+c^4=(a^2+b^2+c^2)^2 - 2(a^2b^2+b^2c^2+c^2a^2)= - 22\\ a^5+b^5+c^5= - 3.........................a^5+b^5+c^5=(a+b+c)(a^4+b^4+c^4) - \{a(b^4+c^4c)+b(c^4+a^4)+c(a^4+b^4)\}\\ ...............................................=(a+b+c)(a^4+b^4+c^4) - \{ab(a^3+b^3)+bc(b^3+c^3)+ca(c^3+a^3)\}\\ ...............................................=(a+b+c)(a^4+b^4+c^4) - \{ab(-13 - c^3)+bc(-13 -a^3)+ca(-13 - b^3)\}\\ ...............................................=(a+b+c)(a^4+b^4+c^4) - \{-13( ab+bc+ca)-abc(c^2+a^2+b^2)\}\\ ..........................................................(2)(-22)~~~~~~~~~~~~ - \{-13(3)~~~~~~~~~~~~ -~~~~~~~(-1)(-2)\}~~~~~~= - 3\\ \therefore~~a^5+b^5+c^5-(a^4+b^4+c^4)= - 3 -( - 22)= \Large \color{#D61F06}{19}.

Ashu Dablo
Dec 16, 2014

we use newton sums. http://www.artofproblemsolving.com/Wiki/index.php/Newton%27s_Sums

Dablo Ashu ko😂.....chew seong cheong already made use of it.

Praveen Kumar - 2 years, 10 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...