Bashing roots

Algebra Level 3

if a a and b b are roots of x 2 3 x + 1 = 0 x^2 - 3x + 1 = 0 then find the value of a 2014 + b 2014 + a 2016 + b 2016 a 2015 + b 2015 . \large \frac{a^{2014} + b^{2014} + a^{2016} + b^{2016}}{a^{2015} + b^{2015}}.


The answer is 3.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Nihar Mahajan
May 3, 2015

Since a a is a root we have : a 2 3 a + 1 = 0 a^2-3a+1=0

Let's see what we get after multiplying both sides by a 2014 a^{2014} . Indeed we get the following expression:

a 2016 3 a 2015 + a 2014 = 0 a^{2016}-3a^{2015}+a^{2014} = 0

Similarly we get :

b 2016 3 b 2015 + b 2014 = 0 b^{2016}-3b^{2015}+b^{2014} = 0

Adding both the above equations , we get :

a 2014 + b 2014 + a 2016 + b 2016 3 a 2015 3 b 2015 = 0 a 2014 + b 2014 + a 2016 + b 2016 = 3 ( a 2015 + b 2015 ) a 2014 + b 2014 + a 2016 + b 2016 a 2015 + b 2015 = 3 a^{2014}+b^{2014}+a^{2016} + b^{2016}-3a^{2015}-3b^{2015}=0 \\ \Rightarrow a^{2014}+b^{2014}+a^{2016} + b^{2016}=3(a^{2015}+b^{2015}) \\ \Rightarrow \dfrac{a^{2014} + b^{2014} + a^{2016} + b^{2016}}{a^{2015} + b^{2015}} = \huge\boxed{3}

Moderator note:

Yes this is basically Newton's Sum. Well done again!

OOPP.. Never thought that way...

Rishabh Tripathi - 6 years, 1 month ago
Gautam Jha
May 3, 2015

If a a and b b are the roots of the given quadratic equation

a 2 3 a + 1 = 0 \implies a^2-3a+1=0 and b 2 3 b + 1 = 0 b^2-3b+1=0

a 2 + 1 = 3 a \implies a^2+1=3a and b 2 + 1 = 3 b b^2+1=3b ............................... (1)

Now on rearranging the terms in the numerator the given expression is:

a 2016 + a 2014 + b 2016 + b 2014 a 2015 + b 2015 \dfrac{a^{2016}+a^{2014}+b^{2016}+b^{2014}}{a^{2015}+b^{2015}}

= a 2014 ( a 2 + 1 ) + b 2014 ( b 2 + 1 ) a 2015 + b 2015 =\dfrac{a^{2014}(a^2+1)+b^{2014}(b^2+1)}{a^{2015}+b^{2015}}

= a 2014 . 3 a + b 2014 . 3 b a 2015 + b 2015 =\dfrac{a^{2014}.3a+b^{2014}.3b}{a^{2015}+b^{2015}} Using (1)

= 3 ( a 2015 + b 2015 ) ( a 2015 + b 2015 ) =\dfrac{3(a^{2015}+b^{2015})}{(a^{2015}+b^{2015})}

= 3 =\boxed{3}

Otto Bretscher
May 3, 2015

Let x n = a n + b n x_n=a^n+b^n . According to the theory of Binet Forms, we have the recursive equation x n = 3 x n 1 x n 2 x_n=3x_{n-1}-x_{n-2} , or, x n 2 + x n x n 1 = 3 \frac{x_{n-2}+x_{n}}{x_{n-1}}=3 . Applying this equation to n = 2016 n=2016 , we find the answer, 3 \boxed{3} .

a + b = 3 a n d a b = 1. ( a 2015 + b 2015 ) ( a + b ) = a 2016 + b 2016 + a b ( a 2014 + b 2014 ) a 2015 + b 2015 = a 2016 + b 2016 + 1 ( a 2014 + b 2014 ) 3 f ( a , b ) = 3 a+b=3~~and~~~~~ ab=1.\\(a^{2015} + b^{2015})*(a+b)=a^{2016} + b^{2016}+ab*(a^{2014} + b^{2014})\\\implies~a^{2015} + b^{2015}=\dfrac{a^{2016} + b^{2016}+1*(a^{2014} + b^{2014})}{3} \\ \therefore~f(a,b)=3

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...