'Bashing' Telescope.

Algebra Level 5

i = 2 10 4 i 5 + 10 i 4 + 16 i 3 + 14 i 2 4 i 4 i 8 + 4 i 7 + 2 i 6 8 i 5 7 i 4 + 4 i 3 + 4 i 2 \large \displaystyle \sum_{i=2}^{10} \dfrac{4i^5 + 10i^4 + 16i^3 + 14i^2-4i - 4}{i^8 + 4i^7 + 2i^6 - 8i^5 - 7i^4 + 4i^3 + 4i^2}

If the above summation can be simplified to a b \dfrac{a}{b} where a a and b b are coprime positive integers . What is the value of a + b a+b ?


The answer is 2513.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Nihar Mahajan
Mar 8, 2015

i = 2 10 4 i 5 + 10 i 4 + 16 i 3 + 14 i 2 4 i 4 i 8 + 4 i 7 + 2 i 6 8 i 5 7 i 4 + 4 i 3 + 4 i 2 \displaystyle \sum_{i=2}^{10} \dfrac{4i^5 + 10i^4 + 16i^3 + 14i^2-4i - 4}{i^8 + 4i^7 + 2i^6 - 8i^5 - 7i^4 + 4i^3 + 4i^2}

It can be written as:

i = 2 10 i 6 + 6 i 5 + 13 i 4 + 12 i 3 + 4 i 2 ( i 6 + 4 i 5 + 2 i 4 8 i 3 7 i 2 + 4 i + 4 ) + ( i 6 + 2 i 5 3 i 4 4 i 3 + 4 i 2 ( i 6 2 i 4 + i 2 ) ( i 1 ) 2 ( i ) 2 ( i + 1 ) 2 ( i + 2 ) 2 \displaystyle \sum_{i=2}^{10} \dfrac{i^6 + 6i^5 + 13i^4 + 12i^3+4i^2 \\ -(i^6 + 4i^5 + 2i^4 - 8i^3 - 7i^2 + 4i + 4 ) \\+(i^6 + 2i^5 - 3i^4 - 4i^3 + 4i^2 \\ - (i^6 - 2i^4 + i^2) }{(i-1)^2(i)^2(i+1)^2(i+2)^2}

After factorizing:

i = 2 10 ( i ) 2 ( i + 1 ) 2 ( i + 2 ) 2 ( i 1 ) 2 ( i + 1 ) 2 ( i + 2 ) 2 + ( i 1 ) 2 ( i ) 2 ( i + 2 ) 2 ( i 1 ) 2 ( i ) 2 ( i + 1 ) 2 ( i 1 ) 2 ( i ) 2 ( i + 1 ) 2 ( i + 2 ) 2 \displaystyle \sum_{i=2}^{10} \dfrac{(i)^2(i+1)^2(i+2)^2 \\- (i-1)^2(i+1)^2(i+2)^2 \\+ (i-1)^2(i)^2(i+2)^2 \\- (i-1)^2(i)^2(i+1)^2}{(i-1)^2(i)^2(i+1)^2(i+2)^2}

i = 2 10 1 ( i 1 ) 2 1 i 2 + 1 ( i + 1 ) 2 1 ( i + 2 ) 2 \displaystyle \sum_{i=2}^{10} \dfrac{1}{(i-1)^2} - \dfrac{1}{i^2} + \dfrac{1}{(i+1)^2} - \dfrac{1}{(i+2)^2}

S = 1 1 1 4 + 1 9 1 16 1 4 1 9 + 1 16 1 25 1 64 1 81 + 1 100 1 121 1 81 1 100 + 1 121 1 144 S=\dfrac{1}{1} - \dfrac{1}{4} + \dfrac{1}{9} - \dfrac{1}{16} \\ \dfrac{1}{4} - \dfrac{1}{9} + \dfrac{1}{16} - \dfrac{1}{25} \\ \dots\\\dots\\\dots\\\dots \\ \dfrac{1}{64} - \dfrac{1}{81} + \dfrac{1}{100} - \dfrac{1}{121} \\ \dfrac{1}{81} - \dfrac{1}{100} + \dfrac{1}{121} - \dfrac{1}{144}

S = 1 1 + 1 9 1 100 1 144 S = \dfrac{1}{1} + \dfrac{1}{9} - \dfrac{1}{100} - \dfrac{1}{144}

After simplification ,

S = 1313 1200 S = \dfrac{1313}{1200}

a + b = 1313 + 1200 = 2513 \huge a + b = 1313 + 1200 = \color{#D61F06}{\boxed{2513}}

Wow I finally solved it.

After so many years cries

Mehul Arora - 5 years, 3 months ago

Log in to reply

Me too bro. Can't stop crying ! :))(

Aditya Sky - 5 years ago

NICE QUESTION WITH AN EVEN BETTER SOLUTION

Vaibhav Prasad - 6 years, 2 months ago

@Nihar Mahajan ,+1 ;D

Parth Lohomi - 6 years, 3 months ago

Log in to reply

:) :) try this 300 followers problem

Nihar Mahajan - 6 years, 3 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...