i = 2 ∑ 1 0 i 8 + 4 i 7 + 2 i 6 − 8 i 5 − 7 i 4 + 4 i 3 + 4 i 2 4 i 5 + 1 0 i 4 + 1 6 i 3 + 1 4 i 2 − 4 i − 4
If the above summation can be simplified to b a where a and b are coprime positive integers . What is the value of a + b ?
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
NICE QUESTION WITH AN EVEN BETTER SOLUTION
@Nihar Mahajan ,+1 ;D
Problem Loading...
Note Loading...
Set Loading...
i = 2 ∑ 1 0 i 8 + 4 i 7 + 2 i 6 − 8 i 5 − 7 i 4 + 4 i 3 + 4 i 2 4 i 5 + 1 0 i 4 + 1 6 i 3 + 1 4 i 2 − 4 i − 4
It can be written as:
i = 2 ∑ 1 0 ( i − 1 ) 2 ( i ) 2 ( i + 1 ) 2 ( i + 2 ) 2 i 6 + 6 i 5 + 1 3 i 4 + 1 2 i 3 + 4 i 2 − ( i 6 + 4 i 5 + 2 i 4 − 8 i 3 − 7 i 2 + 4 i + 4 ) + ( i 6 + 2 i 5 − 3 i 4 − 4 i 3 + 4 i 2 − ( i 6 − 2 i 4 + i 2 )
After factorizing:
i = 2 ∑ 1 0 ( i − 1 ) 2 ( i ) 2 ( i + 1 ) 2 ( i + 2 ) 2 ( i ) 2 ( i + 1 ) 2 ( i + 2 ) 2 − ( i − 1 ) 2 ( i + 1 ) 2 ( i + 2 ) 2 + ( i − 1 ) 2 ( i ) 2 ( i + 2 ) 2 − ( i − 1 ) 2 ( i ) 2 ( i + 1 ) 2
i = 2 ∑ 1 0 ( i − 1 ) 2 1 − i 2 1 + ( i + 1 ) 2 1 − ( i + 2 ) 2 1
S = 1 1 − 4 1 + 9 1 − 1 6 1 4 1 − 9 1 + 1 6 1 − 2 5 1 … … … … 6 4 1 − 8 1 1 + 1 0 0 1 − 1 2 1 1 8 1 1 − 1 0 0 1 + 1 2 1 1 − 1 4 4 1
S = 1 1 + 9 1 − 1 0 0 1 − 1 4 4 1
After simplification ,
S = 1 2 0 0 1 3 1 3
a + b = 1 3 1 3 + 1 2 0 0 = 2 5 1 3